1,063 research outputs found
Thermal behavior and antibacterial studies of a carbonate Mg–Al-based layered double hydroxide (LDH) for in vivo uses
The goal of this work is to study the thermal behavior and the antibacterial properties of a MgAl-CO3 layered double hydroxide (LDH), which demonstrated high efficiency in removing chromium (VI) from contaminated industrial wastewater. The compound has been synthesized via co-precipitation route (direct method) followed by hydrothermal treatment, obtaining nanoscopic crystallites with a partially disordered (turbostratic) structure. After its synthesis, the compound was characterized by means of X-ray powder diffraction, field emission scanning electron microscope, inductively coupled plasma atomic emission spectroscopy and analysis and Fourier transform infrared spectroscopy. On the other hand, with the view to check the drug delivery and surgical tools usage of MgAl-CO3, antibacterial tests, performed according to the Kirby–Bauer method, revealed the inability the growth of the pathogenic bacterial strains. Thermogravimetry and differential thermal analysis revealed that evolution of water from the material occurs in two stages upon heating and a noticeable interaction takes place between water (in the vapor phase) and MgAl-CO3. Kinetic analysis of both steps provides almost constant values of activation energy, with the following average values in the range 0.1 < a < 0.9: E1 = (66 ± 9) kJ mol‒1; E2 = (106 ± 7) kJ mol‒1. Finally, prediction of reasonable reaction times extrapolated at 25 and 37 °C has been made from kinetic parameters of the first step, while almost unrealistic reaction time values were determined using the same procedure with kinetic parameters related to the second step
Herpes simplex virus-type1 (HSV-1) impairs DNA repair in cortical neurons
Several findings suggest that Herpes simplex virus-1 (HSV-1) infection plays a role in the neurodegenerative processes that characterize Alzheimer's disease (AD), but the underlying mechanisms have yet to be fully elucidated. Here we show that HSV-1 productive infection in cortical neurons causes the accumulation of DNA lesions that include both single (SSBs) and double strand breaks (DSBs), which are reported to be implicated in the neuronal loss observed in neurodegenerative diseases. We demonstrate that HSV-1 downregulates the expression level of Ku80, one of the main components of non-homologous end joining (NHEJ), a major pathway for the repair of DSBs. We also provide data suggesting that HSV-1 drives Ku80 for proteasomal degradation and impairs NHEJ activity, leading to DSB accumulation. Since HSV-1 usually causes life-long recurrent infections, it is possible to speculate that cumulating damages, including those occurring on DNA, may contribute to virus induced neurotoxicity and neurodegeneration, further suggesting HSV-1 as a risk factor for neurodegenerative conditions
ZnAl-SO4 Layered Double Hydroxide and Allophane for Cr(VI), Cu(II) and Fe(III) Adsorption in Wastewater: Structure Comparison and Synergistic Effects
Owing to their structure, layered double hydroxides (LDHs) and allophane are nowadays
considered as promising materials for application in different fields. The goal of this work is to
compare the efficacy of allophane and ZnAl-SO4 LDH to remove, by adsorption, some cationic and
anionic pollutants from industrial wastewater. Both compounds were synthesized via the coprecipitation
route (direct method) followed by hydrothermal treatment, obtaining nanoscopic
crystallites with a partially disordered turbostratic (ZnAl-SO4 LDH) or amorphous (allophane)
structure. The characterization of the obtained compounds was performed by means of powder xray
diffraction (PXRD), thermal gravimetry analysis (TGA), field emission scanning electron
microscopy analysis (FESEM), and Fourier-transform infrared spectroscopy (FT-IR). The sorbents
were tested using wastewater produced by a real metalworking plant and containing ionic species
such as Cu(II), Fe(III) and Cr(VI), whose concentration was measured by means of inductively
coupled plasma-optical emission spectrometry (ICP-OES). This investigation represents an
alternative procedure with respect to standard protocols based on customarily made and artificially
lab-produced wastewaters. Both sorbents and their combination proved to be efficient in Cr(VI)
removal, irrespective of the presence of cations like Cu(II) and Fe(III). A synergistic effect was
detected for Cu(II) adsorption in a mixed allophane/LDH sorbent, leading to a Cu(II) removal rate
of 89.5%
Electrochemical study on nickel aluminum layered double hydroxides as high-performance electrode material for lithium-ion batteries based on sodium alginate binder
Nickel aluminum layered double hydroxide (NiAl LDH) with nitrate in its interlayer is investigated as a negative electrode material for lithium-ion batteries (LIBs). The effect of the potential range (i.e., 0.01–3.0 V and 0.4–3.0 V vs. Li+/Li) and of the binder on the performance of the material is investigated in 1 M LiPF6 in EC/DMC vs. Li. The NiAl LDH electrode based on sodium alginate (SA) binder shows a high initial discharge specific capacity of 2586 mAh g−1 at 0.05 A g−1 and good stability in the potential range of 0.01–3.0 V vs. Li+/Li, which is better than what obtained with a polyvinylidene difluoride (PVDF)-based electrode. The NiAl LDH electrode with SA binder shows, after 400 cycles at 0.5 A g−1, a cycling retention of 42.2% with a capacity of 697 mAh g−1 and at a high current density of 1.0 A g−1 shows a retention of 27.6% with a capacity of 388 mAh g−1 over 1400 cycles. In the same conditions, the PVDF-based electrode retains only 15.6% with a capacity of 182 mAh g−1 and 8.5% with a capacity of 121 mAh g−1, respectively. Ex situ X-ray photoelectron spectroscopy (XPS) and ex situ X-ray absorption spectroscopy (XAS) reveal a conversion reaction mechanism during Li+ insertion into the NiAl LDH material. X-ray diffraction (XRD) and XPS have been combined with the electrochemical study to understand the effect of different cutoff potentials on the Li-ion storage mechanism
Applied Tests to Select the Most Suitable Fungal Strain for the Recovery of Critical Raw Materials from Electronic Waste Powder
Electrical and electronic wastes (WEEEs) are a potential source of raw materials. The main challenge for scientists is to set up a reliable and eco-friendly process to recycle raw materials and precious elements from WEEEs. Today, we know that fungi could play an active role in green technologies aimed at recycling valuable elements. The bioaccumulation mechanism and bioleaching activity of filamentous fungal species have already been exploited fruitfully in extraction processes. However, not all fungal strains possess the same characteristics, and it is crucial to choose the right strains to use. In this work, we show a method to assess the precious elements’ recovery efficiency from WEEE using fungal strains. A CAS agar screening test for siderophore detection was carried out with three strains. The following plate accumulation test performed on a medium added with 120 ppm of electronic waste powder highlighted the differences in accumulation capability, growth rate, and biomass production. Among the elements in tested waste, yttrium, copper, and palladium show the highest bioconcentration factor. The results confirm the biotechnological potential of fungi to recover valuable elements at the bench scale, highlighting the importance of effective screening tests to assess the most efficient strain for each kind of waste
The cypsela (achene) of Echinacea purpurea as a diffusion unit of a community of microorganisms
Echinacea purpurea is a plant cultivated worldwide for its pharmaceutical properties, mainly related to the stimulation of the immune system in the treatment of respiratory infections. The cypselas (fruits) of E. purpurea were examined in order to investigate the presence, localization and potential function(s) of endophytic microorganisms. Electron and confocal microscopy observations showed that three different components of microorganisms were associated to cypselas of E. purpurea: (i) one endocellular bacterial component in the cotyledons, enclosed within the host membrane; (ii) another more generic bacterial component adhering to the external side of the perianth; and (iii) a fungal component inside the porous layer of the perianth, the woody and porous modified residual of the flower, in the form of numerous hyphae able to cross the wall between adjacent cells. Isolated bacteria were affiliated to the genera Paenibacillus, Pantoea, and Sanguibacter. Plate tests showed a general resistance to six different antibiotics and also to an antimicrobial-producing Rheinheimera sp. test strain. Finally, microbiome-deprived E. purpurea seeds showed a reduced ability to germinate, suggesting an active role of the microbiome in the plant vitality. Our results suggest that the endophytic bacterial community of E. purpurea, previously found in roots and stem/leaves, might be already carried at the seed stage, hosted by the cotyledons. A further microbial fungal component is transported together with the seed in the perianth of the cypsela, whose remarkable structure may be considered as an adaptation for fungal transportation, and could influence the capability of the seed to germinate in the soil
Atopic dermatitis
Atopic dermatitis (AD) is a common in ammatory skin disease, clinically characterized by recur- rent eczematous lesions and intense itching, leading to excoriations and susceptibility to cutaneous infections. Although it is considered a pediatric disorder, mainly starting in infancy, it is also very common in adults. Etiology of AD is complex and multifactorial: interaction between genetic susceptibility and environment, but also cutaneous barrier impairment, change in microbiome composition and innate and adaptive immune dysregulation are the main factors involved in the pathogenesis of the disease. Originally, the disorder was considered mediated by an imbalance towards a T-helper 2 response and excessive IgE production to aller- gens, but now it is recognized as a lifelong disposition with variable clinical expressivity, where dysfunctions of the epidermal barrier, immune system and microbiome play a central role. AD leads to a substantial psycho- social burden on patients and their relatives and increases the risk of other allergic and non allergic disorders. e real economic impact of AD is di cult to measure due to the broad spectrum of disease severity and the multiple direct and indirect costs, but the overall medical expenses seem to be very high and similar to those of other diseases such as diabetes. Currently, a multiple therapeutic approach is aimed only at improving the skin state, reducing itching and keeping a stable condition. New safety and curative treatments may be devel- oped only after enhancing our understanding on the pathogenesis of AD and the heterogeneity of its clinical manifestations. (www.actabiomedica.it
An In Vitro Model of Glioma Development
Gliomas are the prevalent forms of brain cancer and derive from glial cells. Among them, astrocytomas are the most frequent. Astrocytes are fundamental for most brain functions, as they contribute to neuronal metabolism and neurotransmission. When they acquire cancer properties, their functions are altered, and, in addition, they start invading the brain parenchyma. Thus, a better knowledge of transformed astrocyte molecular properties is essential. With this aim, we previously developed rat astrocyte clones with increasing cancer properties. In this study, we used proteomic analysis to compare the most transformed clone (A-FC6) with normal primary astrocytes. We found that 154 proteins are downregulated and 101 upregulated in the clone. Moreover, 46 proteins are only expressed in the clone and 82 only in the normal cells. Notably, only 11 upregulated/unique proteins are encoded in the duplicated q arm of isochromosome 8 (i(8q)), which cytogenetically characterizes the clone. Since both normal and transformed brain cells release extracellular vesicles (EVs), which might induce epigenetic modifications in the neighboring cells, we also compared EVs released from transformed and normal astrocytes. Interestingly, we found that the clone releases EVs containing proteins, such as matrix metalloproteinase 3 (MMP3), that can modify the extracellular matrix, thus allowing invasion
- …