37 research outputs found
A simple and effective porous plug for a practical standard reference electrode in nonaqueous media
The calomel electrode, a practical standard reference electrode for aqueous solution, has no counterpart in nonaqueous electrochemical work. Several different reference electrodes are described and employed for each nonaqueous solvent, such as acetonitrile, N,Ndimethylformamide or dimethylsulfoxide. The use of different solvents for the reference electrode and the electrochemical cell solutions has been avoided, not only because of the uncertainty of contact potentials, but because of the practical need to avoid mixing of the solutions. Sintered glass cannot impede the mixing of solutions, specially during long experiments. Special porous glass plugs, such as those made with Vicor , are extremely effective as diffusion barriers and provide good electrical contact. However, they are fragile and tend to crack easily when placed between different solvents or solutions of different ionic strength. Certain proposed porous plugs, such as that of Moe, resulted, in my experience, difficult to use with both a satisfactory closure and an adequate electrical resistance. We have designed and constructed very simple and effective reference electrode holders with the following procedure: One of the ends of a Pyrex-glass cylinder, of appropriate length and 2–3 mm diameter, is sealed by fusion in a torch flame. The closed cylinder is filled, to a 0.5–1.0 cm height, with an homogeneous mixture of finely ground Pyrex glass and porous ceramic material (suitable proportions are given below), such as white bathroom tiles. The end of the tube that contains the mixture is heated in a laboratory burner flame until it glows red. This sinters the inner mixture without fusing the outer Pyrex cylinder. The end of the tube is marked and cut with a glass-cutter, thus exposing the sintered mixture which will constitute the porous plug end of the reference electrode. The Pyrex-glass cylinder is filled with the solution and the components of the RE. We commonly use, with excellent results, the AgNO₃(ACN)/Ag reference electrode, which is the most commonly used in nonaqueous solvents. This device was tested with classical couples such as ferrocene/ferrocenium by cyclic voltammetry (C.V.). The results obtained showed a good correlation with literature data [3]. An important advantage of the device is the ability to easily change the porosity and electrical resistance of the plug through the variation of the ratio of glass to porous material. The essays showed that a 20–40 wt% of porous material gave satisfactory results. AgNO₃(ACN)/Ag reference electrodes thus built, have been in use in our laboratory for several years, in different systems such as quinones, 1,2,5-thiadiazoles and its derivatives, alcohols, thiols and amides [4–9] dissolved in electrolytic solutions of almost all common protic and aprotic nonaqueous solvents (occasionally in the presence of strong acids – trifluoracetic or perchloric – or bases – sodium ethoxide), without solution leakage or contamination problems. Routinely, C.V. and long electrolysis were employed. Their mechanical resistance is high and is comparable to that of a solid glass-rod or porcelain of similar diameter.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicada
Reacciones alectroquímicas y propiedades de sustancias terpenoides
Fil: Caram, José Alberto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Electrochemical behaviour of anthraquinone dyes in non aqueous solvent solution: part I. medium effect on the electrochemical behaviour
The conditions under which alizarin, purpurin, carminc acid, quinalizarin and alizarin red S in the solution ofseveral organic solvents can be electrochemically transformed are analysed. The electrochemical activity ofthese molecules with quinone and phenolic moieties is relatively easy detected by cyclic voltammetry. Numerouselectro-reduction/oxidation processes without and with added acid or base are observed. The number,the current intensity and the peak potential of the charge transfer processes are rationalized on the basis of thehomogeneous dissociation equilibriums of the phenolic-OH groups. These equilibria are significantly alteredby the medium. A supporting electrolyte unexpected and important effect on the electrochemical behaviour isobserved. Alkaline cation of the supporting electrolyte promotes the changes in the electrochemical behaviourby coordinating with opposite charge species. A confusion published in the literature that the electro-reductionof the hydroxyquinones proceeds only through the formation of a radical-anion and a dianion is revealed.Solvent effect is explained by the stabilization of charge species, which is related to some solvent properties(Gutmann acceptor/donor number and dielectric constant). Solvents with strong acceptor properties favour thedissociation of the phenolic-OH groups. The dissociation equilibriums of phenolic-OH groups in each solventare confirmed by UV-vis spectra of each dye in solution. Alizarin in DMA solvent with added base shows aparticular electrochemical behaviour.For alizarin/DMF system a reaction mechanism is proposed, and alternative mechanisms are suggested forother dyes.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicada
Electrochemical behaviour of anthraquinone dyes in non aqueous solvent solution: part I. medium effect on the electrochemical behaviour
The conditions under which alizarin, purpurin, carminc acid, quinalizarin and alizarin red S in the solution ofseveral organic solvents can be electrochemically transformed are analysed. The electrochemical activity ofthese molecules with quinone and phenolic moieties is relatively easy detected by cyclic voltammetry. Numerouselectro-reduction/oxidation processes without and with added acid or base are observed. The number,the current intensity and the peak potential of the charge transfer processes are rationalized on the basis of thehomogeneous dissociation equilibriums of the phenolic-OH groups. These equilibria are significantly alteredby the medium. A supporting electrolyte unexpected and important effect on the electrochemical behaviour isobserved. Alkaline cation of the supporting electrolyte promotes the changes in the electrochemical behaviourby coordinating with opposite charge species. A confusion published in the literature that the electro-reductionof the hydroxyquinones proceeds only through the formation of a radical-anion and a dianion is revealed.Solvent effect is explained by the stabilization of charge species, which is related to some solvent properties(Gutmann acceptor/donor number and dielectric constant). Solvents with strong acceptor properties favour thedissociation of the phenolic-OH groups. The dissociation equilibriums of phenolic-OH groups in each solventare confirmed by UV-vis spectra of each dye in solution. Alizarin in DMA solvent with added base shows aparticular electrochemical behaviour.For alizarin/DMF system a reaction mechanism is proposed, and alternative mechanisms are suggested forother dyes.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicada
Electrochemical behaviour of anthraquinone dyes in non aqueous solvent solution: part I. medium effect on the electrochemical behaviour
The conditions under which alizarin, purpurin, carminc acid, quinalizarin and alizarin red S in the solution ofseveral organic solvents can be electrochemically transformed are analysed. The electrochemical activity ofthese molecules with quinone and phenolic moieties is relatively easy detected by cyclic voltammetry. Numerouselectro-reduction/oxidation processes without and with added acid or base are observed. The number,the current intensity and the peak potential of the charge transfer processes are rationalized on the basis of thehomogeneous dissociation equilibriums of the phenolic-OH groups. These equilibria are significantly alteredby the medium. A supporting electrolyte unexpected and important effect on the electrochemical behaviour isobserved. Alkaline cation of the supporting electrolyte promotes the changes in the electrochemical behaviourby coordinating with opposite charge species. A confusion published in the literature that the electro-reductionof the hydroxyquinones proceeds only through the formation of a radical-anion and a dianion is revealed.Solvent effect is explained by the stabilization of charge species, which is related to some solvent properties(Gutmann acceptor/donor number and dielectric constant). Solvents with strong acceptor properties favour thedissociation of the phenolic-OH groups. The dissociation equilibriums of phenolic-OH groups in each solventare confirmed by UV-vis spectra of each dye in solution. Alizarin in DMA solvent with added base shows aparticular electrochemical behaviour.For alizarin/DMF system a reaction mechanism is proposed, and alternative mechanisms are suggested forother dyes.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicada
Nueva vía de generación de radicales aniones derivados de 1,2,5-tiadiazol 1, 1-dióxidos
En la actualidad hay un creciente interés en el estudio de compuestos orgánicos aceptores de electrones capaces de acumular o transportar carga eléctrica, aplicables en semiconductores, imanes orgánicos, etc. Sin embargo, la mayoría de éstos tienen la desventaja de ser sensibles al aire y a la humedad y/o son estables únicamente a bajas temperaturas. Este trabajo presenta los resultados obtenidos en la acumulación de radicales aniones (ARs.-) derivados de 1,2,5-tiadiazol 1,1-dióxido (TDZ) 3,4-disustituido con un sistema electrónico-? conjugado y extendido.El estudio del comportamiento voltamperométrico cíclico (VC), mostró que TPYR y TRojo [3,4] son electroactivos a potenciales catódicos EpcI ca. -0,5 V (vs Ag0/Ag+). Este pico de reducción corresponde al primer proceso de transferencia de carga (TPYR + e- ? TPYR.-). A menor potencial se observa una nueva etapa de reducción, EpcII ca. -1,2 V (vs Ag+/Ag0), correspondiente al proceso TPYR.- + e- ? TPYR=. Estos resultados evidenciaron la capacidad que poseen TPYRy TROJO para formar ARs.- estables en solución de solventes apróticos secos.Se prepararon TPYR.-y TROJO.- por reducción química con LiCN y electrólisis a potencial controlado (EPC, Eapl ca. -0,7 V vs Ag0/Ag+) de TPYR y TROJO en solución de solventes apróticos. Los rendimientos molares de TPYR.-y TROJO.- preparados por ambos procedimientos se estimaron por VC según el método descrito por Dermortier et al [5]. Los rendimientos para ambos ARs.- fueron buenos. Los ARs.-se caracterizaron por VC, UV-Vis y espectroscopía de resonancia paramagnética (EPR). Estas técnicas permitieron evidenciar la formación de los ARs.- como su estabilidad frente al agua y el oxígeno. Se observó que los TDZ en solución de solventes apróticos presentaron un inusual comportamiento frente a la luz. Se inició el estudio del comportamiento fotoquímico y se enfocó hacia la búsqueda de una nueva vía de obtención de ARs.- derivados de TDZ.Los espectros UV-Vis y de fluorescencia de TDZs permitieron elegir condiciones adecuadas de irradiación a las diferentes longitudes de onda (?) de emision (254, 300, 350 y 200-800 nm). Las fotólisis se monitorearon en el tiempo y los ARs.- se caracterizaron por UV-Vis, VC y EPR. Se observó un efecto de la naturaleza del solvente. TDZs en solución de DMF, DCM, ACN, y DMSO por irradiación con luz de 300 y 350 nm descompònen sin generar ARs.-. TDZs en solución de DMSO, DCM y ACN presentan un comportamiento similar al ser irradiados con lámparas de 254 y 200-800 nm. Sin embargo, TDZs forman ARs.- al ser irradiados con lámparas de 254 y 200-800 nm en solución de DMF. Las fotólisis realizadas con una lámpara policromática (200-800 nm) dieron mayor rendimiento de RAs.-.Facultad de Ciencias Exacta
2,7- Dibromofenantro [9,10-C] 1,2,5-tiadiazol 1,1 -dióxido; síntesis, radical anión, propiedades electroquímicas y ópticas
Las energías de las orbitales moleculares HOMO y LUMO de los compuestos orgánicos son parámetros básicos para el diseño y fabricación de dispositivos electrónicos. Se sintetizó 2,7-dibromofenantro [9,10-c]1,2,5-tiadiazol 1,1-dióxido (TRBr2) con un rendimiento molar de 68% siguiendo rutas convencionales de síntesis, se estimaron los niveles de energía para los orbitales moleculares HOMO (-6,33 eV), LUMO (- 4,37 eV) y el band gap óptico (1,9 eV) a partir de las medidas de VC y UV-Vis. Estos valores energéticos sugieren que TRBr2 reúne características típicas de un semiconductor tipo n importantes para el diseño de materiales orgánicos funcionales.Facultad de Ciencias Exacta
Nueva vía de generación de radicales aniones derivados de 1,2,5-tiadiazol 1, 1-dióxidos
En la actualidad hay un creciente interés en el estudio de compuestos orgánicos aceptores de electrones capaces de acumular o transportar carga eléctrica, aplicables en semiconductores, imanes orgánicos, etc. Sin embargo, la mayoría de éstos tienen la desventaja de ser sensibles al aire y a la humedad y/o son estables únicamente a bajas temperaturas. Este trabajo presenta los resultados obtenidos en la acumulación de radicales aniones (ARs.-) derivados de 1,2,5-tiadiazol 1,1-dióxido (TDZ) 3,4-disustituido con un sistema electrónico-? conjugado y extendido.El estudio del comportamiento voltamperométrico cíclico (VC), mostró que TPYR y TRojo [3,4] son electroactivos a potenciales catódicos EpcI ca. -0,5 V (vs Ag0/Ag+). Este pico de reducción corresponde al primer proceso de transferencia de carga (TPYR + e- ? TPYR.-). A menor potencial se observa una nueva etapa de reducción, EpcII ca. -1,2 V (vs Ag+/Ag0), correspondiente al proceso TPYR.- + e- ? TPYR=. Estos resultados evidenciaron la capacidad que poseen TPYRy TROJO para formar ARs.- estables en solución de solventes apróticos secos.Se prepararon TPYR.-y TROJO.- por reducción química con LiCN y electrólisis a potencial controlado (EPC, Eapl ca. -0,7 V vs Ag0/Ag+) de TPYR y TROJO en solución de solventes apróticos. Los rendimientos molares de TPYR.-y TROJO.- preparados por ambos procedimientos se estimaron por VC según el método descrito por Dermortier et al [5]. Los rendimientos para ambos ARs.- fueron buenos. Los ARs.-se caracterizaron por VC, UV-Vis y espectroscopía de resonancia paramagnética (EPR). Estas técnicas permitieron evidenciar la formación de los ARs.- como su estabilidad frente al agua y el oxígeno. Se observó que los TDZ en solución de solventes apróticos presentaron un inusual comportamiento frente a la luz. Se inició el estudio del comportamiento fotoquímico y se enfocó hacia la búsqueda de una nueva vía de obtención de ARs.- derivados de TDZ.Los espectros UV-Vis y de fluorescencia de TDZs permitieron elegir condiciones adecuadas de irradiación a las diferentes longitudes de onda (?) de emision (254, 300, 350 y 200-800 nm). Las fotólisis se monitorearon en el tiempo y los ARs.- se caracterizaron por UV-Vis, VC y EPR. Se observó un efecto de la naturaleza del solvente. TDZs en solución de DMF, DCM, ACN, y DMSO por irradiación con luz de 300 y 350 nm descompònen sin generar ARs.-. TDZs en solución de DMSO, DCM y ACN presentan un comportamiento similar al ser irradiados con lámparas de 254 y 200-800 nm. Sin embargo, TDZs forman ARs.- al ser irradiados con lámparas de 254 y 200-800 nm en solución de DMF. Las fotólisis realizadas con una lámpara policromática (200-800 nm) dieron mayor rendimiento de RAs.-.Facultad de Ciencias Exacta
Nuevos compuestos halogenados derivados de fenantro[9,10-C] [1,2,5] tiadiazol 1,1-dióxido
La investigación sobre la síntesis y las propiedades de moléculas orgánicas semiconductoras en los últimos años ha aumentado considerablemente. El comportamiento químico, la solubilidad, la estabilidad térmica, las propiedades electrónicas y optoelectrónicas resultan de importancia primordial1. La modificación de la estructura molecular para dar a los materiales orgánicos propiedades especiales para ser incorporados en dispositivos electrónicos tales como transistores de efecto de campo orgánicos (OFETs), diodos emisores de luz orgánicos (OLEDs) y celdas solares orgánicas (OSCs), es la motivación actual para satisfacer los retos de la electrónica molecular[1,2]. El 1,2,5-tiadiazol es un heterociclo de cinco miembros que contiene la porción estructural N-S-N que se encuentra presente en varias moléculas con características aceptoras de electrones [3]. En algunas moléculas, el heterociclo se encuentra 3,4-disustituido por distintos sistemas aromáticos para extender sistema electrónico σ conjugado y al mismo tiempo el átomo de azufre puede estar en sus distintas formas oxidadas contando así con un grupo fuertemente electrón atrayente en la estructura [4,5] En esta oportunidad se informan la síntesis, caracterización espectroscópica y estudio de las propiedades electroquímicas (voltamperometría cíclica, VC) y térmicas de tres nuevos derivados halogenados de fenantro[9,10-c]1,2,5-tiadiazol-1,1-dióxido (T): 2-iodofenantro (TI); 2,7-diiodofenantro (TI2) y 2,7-dibromofenantro[9,10-c]1,2,5-tiadiazol-1,1-dióxido (TBr2) (Figura 1). Las nuevas moléculas se obtuvieron con rendimientos molares ca. 70-80% por un procedimiento que consiste en una reacción de condensación del compuesto dicarbonílico correspondiente con sulfamida en solución de EtOH/HCl(g). La estructura cristalina y molecular se estudió por difracción de rayos-X de monocristales para TI y TBr2. Las dos estructuras exhiben enlaces por puente de hidrógeno intermolecular (C-H···O). Particularmente para TI se detectan interacciones π···π mientras que TBr2 experimenta interacciones tipo C-Br···π. El análisis termogravimétrico muestra que los compuestos son estables térmicamente sin presentar pérdida de masa significativa hasta los 250ºC. Los VsCs de los compuestos en solución de DMF/NaClO4 sobre carbono vítreo revelan que los derivados halogenados no resultan electroactivos frente a oxidación hasta potenciales ca. +1,0V (vs. Ago/Ag+). En cambio, los barridos catódicos hasta potenciales ca. -1,7 V (vs. Ag+/Ago) evidencian que se electrorreducen a través de dos procesos de transferencia de carga separados y cuasireversibles (Figura 1). La respuesta voltamperométrica es influenciada por la electronegatividad y el número de halógenos presentes en su estructura. TBr2 presenta el menor potencial de reducción respecto de los demás derivados estudiados. La característica fuertemente aceptora de electrones, los potenciales de reducción ajustables simplemente variando los sustituyentes sobre la porción estructural hidrocarbonada de la molécula, la estabilidad térmica y la química en condiciones ambientales, y la reducción electroquímica a potenciales accesibles resalta la utilidad de estos compuestos como posibles candidatos de alto valor para la generación de materiales orgánicos conjugados tipo-n.Universidad Nacional de La Plat
Nuevos compuestos halogenados derivados de fenantro[9,10-C] [1,2,5] tiadiazol 1,1-dióxido
La investigación sobre la síntesis y las propiedades de moléculas orgánicas semiconductoras en los últimos años ha aumentado considerablemente. El comportamiento químico, la solubilidad, la estabilidad térmica, las propiedades electrónicas y optoelectrónicas resultan de importancia primordial1. La modificación de la estructura molecular para dar a los materiales orgánicos propiedades especiales para ser incorporados en dispositivos electrónicos tales como transistores de efecto de campo orgánicos (OFETs), diodos emisores de luz orgánicos (OLEDs) y celdas solares orgánicas (OSCs), es la motivación actual para satisfacer los retos de la electrónica molecular[1,2]. El 1,2,5-tiadiazol es un heterociclo de cinco miembros que contiene la porción estructural N-S-N que se encuentra presente en varias moléculas con características aceptoras de electrones [3]. En algunas moléculas, el heterociclo se encuentra 3,4-disustituido por distintos sistemas aromáticos para extender sistema electrónico σ conjugado y al mismo tiempo el átomo de azufre puede estar en sus distintas formas oxidadas contando así con un grupo fuertemente electrón atrayente en la estructura [4,5] En esta oportunidad se informan la síntesis, caracterización espectroscópica y estudio de las propiedades electroquímicas (voltamperometría cíclica, VC) y térmicas de tres nuevos derivados halogenados de fenantro[9,10-c]1,2,5-tiadiazol-1,1-dióxido (T): 2-iodofenantro (TI); 2,7-diiodofenantro (TI2) y 2,7-dibromofenantro[9,10-c]1,2,5-tiadiazol-1,1-dióxido (TBr2) (Figura 1). Las nuevas moléculas se obtuvieron con rendimientos molares ca. 70-80% por un procedimiento que consiste en una reacción de condensación del compuesto dicarbonílico correspondiente con sulfamida en solución de EtOH/HCl(g). La estructura cristalina y molecular se estudió por difracción de rayos-X de monocristales para TI y TBr2. Las dos estructuras exhiben enlaces por puente de hidrógeno intermolecular (C-H···O). Particularmente para TI se detectan interacciones π···π mientras que TBr2 experimenta interacciones tipo C-Br···π. El análisis termogravimétrico muestra que los compuestos son estables térmicamente sin presentar pérdida de masa significativa hasta los 250ºC. Los VsCs de los compuestos en solución de DMF/NaClO4 sobre carbono vítreo revelan que los derivados halogenados no resultan electroactivos frente a oxidación hasta potenciales ca. +1,0V (vs. Ago/Ag+). En cambio, los barridos catódicos hasta potenciales ca. -1,7 V (vs. Ag+/Ago) evidencian que se electrorreducen a través de dos procesos de transferencia de carga separados y cuasireversibles (Figura 1). La respuesta voltamperométrica es influenciada por la electronegatividad y el número de halógenos presentes en su estructura. TBr2 presenta el menor potencial de reducción respecto de los demás derivados estudiados. La característica fuertemente aceptora de electrones, los potenciales de reducción ajustables simplemente variando los sustituyentes sobre la porción estructural hidrocarbonada de la molécula, la estabilidad térmica y la química en condiciones ambientales, y la reducción electroquímica a potenciales accesibles resalta la utilidad de estos compuestos como posibles candidatos de alto valor para la generación de materiales orgánicos conjugados tipo-n.Universidad Nacional de La Plat