47,946 research outputs found
A Survey of Positioning Systems Using Visible LED Lights
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe
Profiles of thermal line emission from advection dominated accretion flows
Recently, Narayan & Raymond (1999) proposed that the thermal emission lines
from the hot plasma in advection dominated accretion flows (ADAFs) are
potentially observable with the next generation of X-ray observatories, with
which the physical properties of some X-ray sources can be probed. In ADAFs,
the temperature of the ion is so high that the thermal broadening of the line
is important. We calculate the profiles of thermal line emission from ADAFs, in
which both the thermal and Doppler broadening have been considered. It is found
that the double-peaked profiles are present for high inclination angles between
the axis of disk and the line of sight. The double-peaked profiles are smeared
in low inclination cases, and completely disappear while the inclination angle
is less than , where the thermal and turbulent broadening dominated
on the line profiles. We also note that the thermal line profile is affected by
the location of the transition radius of ADAF. The self-similar
height-integrated disk structure and the emissivity with power-law dependence
of radius are adopted in our calculations. The results obtained in this work
can be used as a diagnosis on the future X-ray observations of the thermal
lines. Some important physical quantities of ADAFs could be inferred from
future thermal line observations.Comment: 7 page
Mode Repulsion and Mode Coupling in Random Lasers
We studied experimentally and theoretically the interaction of lasing modes
in random media. In a homogeneously broadened gain medium, cross gain
saturation leads to spatial repulsion of lasing modes. In an inhomogeneously
broadened gain medium, mode repulsion occurs in the spectral domain. Some
lasing modes are coupled through photon hopping or electron absorption and
reemission. Under pulsed pumping, weak coupling of two modes leads to
synchronization of their lasing action. Strong coupling of two lasing modes
results in anti-phased oscillations of their intensities.Comment: 13 pages, 4 figure
Control of coherent backscattering by breaking optical reciprocity
Reciprocity is a universal principle that has a profound impact on many areas
of physics. A fundamental phenomenon in condensed-matter physics, optical
physics and acoustics, arising from reciprocity, is the constructive
interference of quantum or classical waves which propagate along time-reversed
paths in disordered media, leading to, for example, weak localization and
metal-insulator transition. Previous studies have shown that such coherent
effects are suppressed when reciprocity is broken. Here we show that by
breaking reciprocity in a controlled manner, we can tune, rather than simply
suppress, these phenomena. In particular, we manipulate coherent backscattering
of light, also known as weak localization. By utilizing a non-reciprocal
magneto-optical effect, we control the interference between time-reversed paths
inside a multimode fiber with strong mode mixing, and realize a continuous
transition from the well-known peak to a dip in the backscattered intensity.
Our results may open new possibilities for coherent control of classical and
quantum waves in complex systemsComment: Comments are welcom
Orientation and strain modulated electronic structures in puckered arsenene nanoribbons
Orthorhombic arsenene was recently predicted as an indirect bandgap
semiconductor. Here, we demonstrate that nanostructuring arsenene into
nanoribbons can successfully transform the bandgap to be direct. It is found
that direct bandgaps hold for narrow armchair but wide zigzag nanoribbons,
which is dominated by the competition between the in-plane and out-of-plane
bondings. Moreover, straining the nanoribbons also induces a direct bandgap and
simultaneously modulates effectively the transport property. The gap energy is
largely enhanced by applying tensile strains to the armchair structures. In the
zigzag ones, a tensile strain makes the effective mass of holes much higher
while a compressive strain cause it much lower than that of electrons. Our
results are crutial to understand and engineer the electronic properties of two
dimensional materials beyond the planar ones like graphene
Anisotropic softening of magnetic excitations in lightly electron doped SrIrO
The magnetic excitations in electron doped (SrLa)IrO with
were measured using resonant inelastic X-ray scattering at the Ir
-edge. Although much broadened, well defined dispersive magnetic
excitations were observed. Comparing with the magnetic dispersion from the
parent compound, the evolution of the magnetic excitations upon doping is
highly anisotropic. Along the anti-nodal direction, the dispersion is almost
intact. On the other hand, the magnetic excitations along the nodal direction
show significant softening. These results establish the presence of strong
magnetic correlations in electron doped SrLa)IrO with close
analogies to the hole doped cuprates, further motivating the search for high
temperature superconductivity in this system
GPU-accelerated voxelwise hepatic perfusion quantification
Voxelwise quantification of hepatic perfusion parameters from dynamic contrast enhanced (DCE) imaging greatly contributes to assessment of liver function in response to radiation therapy. However, the efficiency of the estimation of hepatic perfusion parameters voxel-by-voxel in the whole liver using a dual-input single-compartment model requires substantial improvement for routine clinical applications. In this paper, we utilize the parallel computation power of a graphics processing unit (GPU) to accelerate the computation, while maintaining the same accuracy as the conventional method. Using compute unified device architecture-GPU, the hepatic perfusion computations over multiple voxels are run across the GPU blocks concurrently but independently. At each voxel, nonlinear least-squares fitting the time series of the liver DCE data to the compartmental model is distributed to multiple threads in a block, and the computations of different time points are performed simultaneously and synchronically. An efficient fast Fourier transform in a block is also developed for the convolution computation in the model. The GPU computations of the voxel-by-voxel hepatic perfusion images are compared with ones by the CPU using the simulated DCE data and the experimental DCE MR images from patients. The computation speed is improved by 30 times using a NVIDIA Tesla C2050 GPU compared to a 2.67 GHz Intel Xeon CPU processor. To obtain liver perfusion maps with 626 400 voxels in a patient's liver, it takes 0.9 min with the GPU-accelerated voxelwise computation, compared to 110 min with the CPU, while both methods result in perfusion parameters differences less than 10 ‚àÃÂ6 . The method will be useful for generating liver perfusion images in clinical settings.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98596/1/0031-9155_57_17_5601.pd
Critical States Embedded in the Continuum
We introduce a class of critical states which are embedded in the continuum
(CSC) of one-dimensional optical waveguide array with one non-Hermitian defect.
These states are at the verge of being fractal and have real propagation
constant. They emerge at a phase transition which is driven by the imaginary
refractive index of the defect waveguide and it is accompanied by a mode
segregation which reveals analogies with the Dicke super -radiance. Below this
point the states are extended while above they evolve to exponentially
localized modes. An addition of a background gain or loss can turn these
localized states to bound states in the continuum.Comment: 4.5 pages, 3 figures, 1 page of supplementary material including one
figur
- …