70 research outputs found

    Intercomparison of oceanic and atmospheric forced and coupled mesoscale simulations <br>Part I: Surface fluxes

    No full text
    International audienceA mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm-2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer to the atmosphere is highly non-local and enhanced in the coupled simulation

    MCR: modern colistin resistance

    Get PDF
    Recently, plasmid-mediated and, therefore, transferable bacterial polymyxin resistance was discovered in strains from both humans and animals. Such a trait may widely spread geographically, while simultaneously crossing microbial species barriers. This may ultimately render the “last resort” polymyxin antibiotics therapeutically useless. Colistin is currently used to treat infections caused by Gram-negative carbapenemase producers and colistin resistance may lead to practical pan-antibiotic resistance. We here analyzed the medical and diagnostic consequences of (emerging) colistin resistance and propose pathways toward adequate diagnostics for timely detection of both asymptomatic carriage and infection. Culture-based testing using chromogenic and selective media for screening clinical (and veterinary) specimens may constitute key tools for that purpose. Relevant molecular tests are also discussed

    The West African Monsoon Onset: a concise comparison of definitions

    Get PDF
    The onset of the West African Monsoon (WAM) marks a vital time for local and regional stakeholders. Whilst the seasonal progression of monsoon winds and the related migration of precipitation from the Guinea Coast towards the Soudan/Sahel is apparent, there exist contrasting man-made definitions of what the WAM onset means. Broadly speaking, onset can be analyzed regionally, locally or over a designated intermediate scale. There are at least eighteen distinct definitions of the WAM onset in publication with little work done on comparing observed onset from different definitions or comparing onset realizations across different datasets and resolutions. Here, nine definitions have been calculated using multiple datasets of different metrics at different resolution. It is found that mean regional onset dates are consistent across multiple datasets and different definitions. There is low inter-annual variability in regional onset suggesting that regional seasonal forecasting of the onset provides few benefits over climatology. In contrast, local onsets show high spatial, inter-annual and inter-definition variability. Furthermore it is found that there is little correlation between local onset dates and regional onset dates across West Africa implying a disharmony between regional measures of onset and the experience on a local scale. The results of this study show that evaluation of seasonal monsoon onset forecasts is far from straightforward. Given a seasonal forecasting model, it is possible to simultaneously have a good and bad prediction of monsoon onset simply through selection of onset definition and observational dataset used for comparison

    Antimicrobial consumption and resistance in adult hospital inpatients in 53 countries:results of an internet-based global point prevalence survey

    Get PDF
    Summary: Background: The Global Point Prevalence Survey (Global-PPS) established an international network of hospitals to measure antimicrobial prescribing and resistance worldwide. We aimed to assess antimicrobial prescribing and resistance in hospital inpatients. Methods: We used a standardised surveillance method to collect detailed data about antimicrobial prescribing and resistance from hospitals worldwide, which were grouped by UN region. The internet-based survey included all inpatients (adults, children, and neonates) receiving an antimicrobial who were on the ward at 0800 h on one specific day between January and September, 2015. Hospitals were classified as primary, secondary, tertiary (including infectious diseases hospitals), and paediatric hospitals. Five main ward types were defined: medical wards, surgical wards, intensive-care units, haematology oncology wards, and medical transplantation (bone marrow or solid transplants) wards. Data recorded included patient characteristics, antimicrobials received, diagnosis, therapeutic indication according to predefined lists, and markers of prescribing quality (eg, whether a stop or review date were recorded, and whether local prescribing guidelines existed and were adhered to). We report findings for adult inpatients. Findings: The Global-PPS for 2015 included adult data from 303 hospitals in 53 countries, including eight lower-middle-income and 17 upper-middle-income countries. 86 776 inpatients were admitted to 3315 adult wards, of whom 29 891 (34·4%) received at least one antimicrobial. 41 213 antimicrobial prescriptions were issued, of which 36 792 (89·3%) were antibacterial agents for systemic use. The top three antibiotics prescribed worldwide were penicillins with β-lactamase inhibitors, third-generation cephalosporins, and fluoroquinolones. Carbapenems were most frequently prescribed in Latin America and west and central Asia. Of patients who received at least one antimicrobial, 5926 (19·8%) received a targeted antibacterial treatment for systemic use, and 1769 (5·9%) received a treatment targeting at least one multidrug-resistant organism. The frequency of health-care-associated infections was highest in Latin America (1518 [11·9%]) and east and south Asia (5363 [10·1%]). Overall, the reason for treatment was recorded in 31 694 (76·9%) of antimicrobial prescriptions, and a stop or review date in 15 778 (38·3%). Local antibiotic guidelines were missing for 7050 (19·2%) of the 36 792 antibiotic prescriptions, and guideline compliance was 77·4%. Interpretation: The Global-PPS showed that worldwide surveillance can be accomplished with voluntary participation. It provided quantifiable measures to assess and compare the quantity and quality of antibiotic prescribing and resistance in hospital patients worldwide. These data will help to improve the quality of antibiotic prescribing through education and practice changes, particularly in low-income and middle-income countries that have no tools to monitor antibiotic prescribing in hospitals. Funding: bioMérieux

    Relationship between DMS concentration and the upper mixed layer solar radiation dose

    No full text
    International audienceDimethylsulfide (DMS) is a natural sulfur compound arising from algal dimethylsulfoniopropionate (DMSP) but through complex biotic and abiotic processes. It is an important natural source of atmospheric sulfur providing new and/or bigger hygroscopic particles for cloud formation over the ocean. One recent study (Vallina and Simo, Science, 2007) suggests the existence of a close quantitative link, at the global scale but also locally, between DMS and the solar radiation dose (SRD), a measure of available radiation inside the mixed layer. Joint data including CTDs, DMS concentration and solar radiation data, collected all along the year 2001 in the northeastern Atlantic during the POMME experiment are analyzed. Contrary to the observations in the Sargasso Sea and Blanes Bay (Mediterranean Sea) presented by Vallina and Simo (2007), this new data set clearly indicates that SRD and DMS are only weakly correlated, and this whatever the numerous sensitivity tests performed (i.e. the solar irradiance, the optical properties of surface waters, the mixed layer depth criteria). Additionally, the DMS versus SRD relationship appears quite sensitive to the irradiance attenuation law. Hence, it appears that SRD cannot be used to understand DMS dynamics at the scale of the north Atlantic basin

    A new assessment in North Atlantic waters of the relationship between DMS concentration and the upper mixed layer solar radiation dose

    No full text
    International audienceThe results of the POMME experiment, conducted in the northeast Atlantic Ocean in 2001, were used to explore whether dimethylsulfide (DMS) concentrations are linked to epipelagic ecosystem exposure to solar radiation as proposed by Vallina and Simó (2007). According to the seasonal variations in the DMS-to-dimethylsulfoniopropionate (DMSP) ratio, we found that the summer surface water concentration of DMS was, on average, threefold higher than expected from the abundance of DMSP. This is in agreement with previous observations and confirms that seasonal changes in the trophic regime, from mesotrophy in winter and spring to oligotrophy in summer, are accompanied by a relative enhancement of DMS over DMSP. However, contrary to the observations carried out at Hydrostation S in the northwest Atlantic Ocean, no strong relationship between DMS and the solar radiation dose (SRD) exists in the northeast Atlantic Ocean. From a series of sensitivity tests, where different combinations of the three parameters that drive the SRD were investigated (i.e., the solar irradiance, the law of its attenuation in the sea, and the mixed layer depth), we found that the SRD accounted for only 19% to 24% of the variance associated with monthly surface DMS concentrations. Additionally, the slope of the relationship between DMS and SRD was particularly sensitive to the choice of the irradiance attenuation law. Overall, we find that the DMS versus SRD relationship is much less significant in the northeast Atlantic Ocean than in the Sargasso Sea. In addition, we suggest a large impact of algal community structure on summer DMS concentrations in the mesotrophic coastal waters of the Mediterranean Sea. Therefore, we question the consistency between DMS versus SRD relationships at local, basin, and global scales and propose that empirical relationships relating DMS to SRD be applied with caution
    corecore