2,629 research outputs found

    Megasequence architecture of Taranaki, Wanganui, and King Country basins and Neogene progradation of two continental margin wedges across western New Zealand.

    Get PDF
    Taranaki, Wanganui and King Country basins (formerly North Wanganui Basin) have been regarded as discrete basins, but they contain a very similar Neogene sedimentary succession and much of their geological history is held in common. Analysis of the stratigraphic architecture of the fill of each basin reveals the occurrence of four 2nd order megasequences of tectonic origin. The oldest is the early-early Miocene (Otaian Stage) Mahoenui Group/megasequence, followed by the late-early Miocene (Altonian Stage) Mokau Group/megasequence (King Country Basin), both of which correspond to the lower part of the Manganui Formation in Taranaki Basin. The third is the middle to late Miocene Whangamomona Group/megasequence, and the fourth is the latest Miocene-Pleistocene Rangitikei Supergroup/megasequence, both represented in the three basins. Higher order sequences (4th, 5th, 6th), having a eustatic origin, are evident in the Whangamomona and Rangitikei megasequences, particularly those of 5th order with 41 ka periodicity. The distribution of the megasequences are shown in a series of cross-section panels built-up from well -to-well correlations, complemented by time-stratigraphic cross-sections. The base of each megasequence is marked by marine flooding and represents a discrete phase in basin development. For the first megasequence this corresponded to rapid subsidence of the King Country Basin in a compressional setting and basement overthrusting on the Taranaki Fault, with the rapid introduction of terrigenous sediment during transgression. The Mahoenui megasequence accumulated mostly at bathyal depths; no regressive deposits are evident, having been eroded during subsequent uplift. The second (Mokau) megasequence accumulated during reverse movement on the Ohura Fault, formation of the Tarata Thrust Zone, and onlap of the basement block between the Taranaki Fault and the Patea-Tongaporutu-Herangi High (PTH). The Whangamomona megasequence accumulated during extensive reflooding of King Country Basin, onlap of the PTH High and of basement in the Wanganui Basin. This is an assymetrical sequence with a thin transgressive part (Otunui Formation) and a thick regressive part (Mount Messenger to Matemateaonga Formations). It represents the northward progradation of a continental margin wedge with bottom-set, slope-set and top-set components through Wanganui and King Country basins, with minor progradation over the PTH High and into Taranaki Basin. The Rangitikei megasequence is marked by extensive flooding at its base (Tangahoe Mudstone) and reflects the pull-down of the main Wanganui Basin depocentre. This megasequence comprises a second progradational margin wedge, which migrated on two fronts, one northward through Wanganui Basin and into King Country Basin, and a second west of the PTH High, through the Toru Trough and into the Central and Northern Grabens of Taranaki Basin and on to the Western Platform as the Giant Foresets Formation, thereby building up the modern shelf and slope. Fifth and 6th order sequences are well expressed in the shelf deposits (top-sets) of the upper parts of the Whangamomona and Rangitikei megasequences. They typically have a distinctive sequence architecture comprising shellbed (TST), siltstone (HST) and sandstone (RST) beds. Manutahi-1, which was continuously cored, provides calibration of this sequence architecture to wireline log character, thereby enabling shelf deposits to be mapped widely in the subsurface via the wireline data for hydrocarbon exploration holes. Similar characterization of slope-sets and bottom-sets is work ongoing. The higher order (eustatic) sequences profoundly influenced the local reservoir architecture and seal properties of formations, whereas the megasequence progradation has been responsible for the regional hydrocarbon maturation and migration. Major late tilting, uplift and erosion affected all three basins and created a regional high along the eastern Margin of Taranaki Basin, thereby influencing the migration paths of hydrocarbons sourced deeper in the basin and allowing late charge of structural and possibly stratigraphic traps

    Megasequence architecture of Taranaki, Wanganui, and King Country basins and Neogene progradation of two continental margin wedges across western New Zealand.

    Get PDF
    Taranaki, Wanganui and King Country basins (formerly North Wanganui Basin) have been regarded as discrete basins, but they contain a very similar Neogene sedimentary succession and much of their geological history is held in common. Analysis of the stratigraphic architecture of the fill of each basin reveals the occurrence of four 2nd order megasequences of tectonic origin. The oldest is the early-early Miocene (Otaian Stage) Mahoenui Group/megasequence, followed by the late-early Miocene (Altonian Stage) Mokau Group/megasequence (King Country Basin), both of which correspond to the lower part of the Manganui Formation in Taranaki Basin. The third is the middle to late Miocene Whangamomona Group/megasequence, and the fourth is the latest Miocene-Pleistocene Rangitikei Supergroup/megasequence, both represented in the three basins. Higher order sequences (4th, 5th, 6th), having a eustatic origin, are evident in the Whangamomona and Rangitikei megasequences, particularly those of 5th order with 41 ka periodicity. The distribution of the megasequences are shown in a series of cross-section panels built-up from well -to-well correlations, complemented by time-stratigraphic cross-sections. The base of each megasequence is marked by marine flooding and represents a discrete phase in basin development. For the first megasequence this corresponded to rapid subsidence of the King Country Basin in a compressional setting and basement overthrusting on the Taranaki Fault, with the rapid introduction of terrigenous sediment during transgression. The Mahoenui megasequence accumulated mostly at bathyal depths; no regressive deposits are evident, having been eroded during subsequent uplift. The second (Mokau) megasequence accumulated during reverse movement on the Ohura Fault, formation of the Tarata Thrust Zone, and onlap of the basement block between the Taranaki Fault and the Patea-Tongaporutu-Herangi High (PTH). The Whangamomona megasequence accumulated during extensive reflooding of King Country Basin, onlap of the PTH High and of basement in the Wanganui Basin. This is an assymetrical sequence with a thin transgressive part (Otunui Formation) and a thick regressive part (Mount Messenger to Matemateaonga Formations). It represents the northward progradation of a continental margin wedge with bottom-set, slope-set and top-set components through Wanganui and King Country basins, with minor progradation over the PTH High and into Taranaki Basin. The Rangitikei megasequence is marked by extensive flooding at its base (Tangahoe Mudstone) and reflects the pull-down of the main Wanganui Basin depocentre. This megasequence comprises a second progradational margin wedge, which migrated on two fronts, one northward through Wanganui Basin and into King Country Basin, and a second west of the PTH High, through the Toru Trough and into the Central and Northern Grabens of Taranaki Basin and on to the Western Platform as the Giant Foresets Formation, thereby building up the modern shelf and slope. Fifth and 6th order sequences are well expressed in the shelf deposits (top-sets) of the upper parts of the Whangamomona and Rangitikei megasequences. They typically have a distinctive sequence architecture comprising shellbed (TST), siltstone (HST) and sandstone (RST) beds. Manutahi-1, which was continuously cored, provides calibration of this sequence architecture to wireline log character, thereby enabling shelf deposits to be mapped widely in the subsurface via the wireline data for hydrocarbon exploration holes. Similar characterization of slope-sets and bottom-sets is work ongoing. The higher order (eustatic) sequences profoundly influenced the local reservoir architecture and seal properties of formations, whereas the megasequence progradation has been responsible for the regional hydrocarbon maturation and migration. Major late tilting, uplift and erosion affected all three basins and created a regional high along the eastern Margin of Taranaki Basin, thereby influencing the migration paths of hydrocarbons sourced deeper in the basin and allowing late charge of structural and possibly stratigraphic traps

    An integrated sequence stratigraphic, palaeoenvironmental, and chronostratigraphic analysis of the Tangahoe Formation, southern Taranaki coast, with implications for mid-Pliocene (c. 3.4–3.0 Ma) glacio-eustatic sea-level changes

    Get PDF
    Sediments of the mid-Pliocene (c. 3.4–3.0 Ma) Tangahoe Formation exposed in cliffs along the South Taranaki coastline of New Zealand comprise a 270 m thick, cyclothemic shallow-marine succession that has been gently warped into a north to south trending, low angle anticline. This study examines the sedimentologic, faunal, and petrographic characteristics of 10 Milankovitch-scale (6th order), shallow-marine depositional sequences exposed on the western limb of the anticline. The sequences are recognised on the basis of the cyclic vertical stacking of their constituent lithofacies, which are bound by sharp wave cut surfaces produced during transgressive shoreface erosion. Each sequence comprises three parts: (1) a 0.2–2 m thick, deepening upwards, basal suite of reworked bioclastic lag deposits (onlap shellbed) and/or an overlying matrix supported, molluscan shellbed of offshore shelf affinity (backlap shellbed); (2) a 5–20 m thick, gradually shoaling, aggradational siltstone succession; and (3) a 5–10 m thick, strongly progradational, well sorted “forced regressive” shoreline sandstone. The three-fold subdivision corresponds to transgressive, highstand, and regressive systems tracts (TSTs, HSTs, and RSTs) respectively, and represents deposition during a glacio-eustatic sea-level cycle. Lowstand systems tract sediments are not recorded because the outcrop is situated c. 100 km east of the contemporary shelf edge and was subaerially exposed at that time. Well developed, sharp- and gradational-based forced regressive sandstones contain a variety of storm-emplaced sedimentary structures, and represent the rapid and abrupt basinward translation of the shoreline on to a storm dominated, shallow shelf during eustatic sea-level fall. Increased supply of sediment from north-west South Island during “forced regression” is indicated from petrographic analyses of the heavy mineralogy of the sandstones. A chronology based on biostratigraphy and the correlation of a new magnetostratigraphy to the magnetic polarity timescale allows: (1) identification of the Mammoth (C2An.2r) and Kaena (C2An.1r) subchrons; (2) correlation of the coastal section to the Waipipian Stage; and (3) estimation of the age of the coastal section as 3.36–3.06 Ma. Qualitative assessment of foraminiferal census data and molluscan palaeoecology reveals cyclic changes in water depth from shelf to shoreline environments during the deposition of each sequence. Seven major cycles in water depth of between 20 and 50m have been correlated to individual 40 ka glacio-eustatic sea-level cycles on the marine oxygen isotope timescale. The coastal Tangahoe Formation provides a shallow-marine record of global glacio-eustasy prior to the development of significant ice sheets on Northern Hemisphere continents, and supports evidence from marine δ18O archives that changes in Antarctic ice volume were occurring during the Pliocene

    Changes in Older and Younger Woods in West-Central Ohio

    Get PDF
    Author Institution: Dept. of Biological Sciences, Wright State University, OHThis study examines changes in two forest stands in the Quercus-Acer saccharum forest region of west central Ohio: an old-growth stand changing from Quercus-dominated to Acer saccharum-dominated and a stand established following agricultural abandonment about 1950. Both stands are in the Wright State University woods. Permanent plots were sampled in 1980 (younger stand only), 1982 (older stand only), 1993, and 2000. The older stand had more small, fewer intermediate, and more large stems than the younger stand. The plot in the new stand showed a bell-shaped distribution with most stems established shortly after land abandonment. Mortality decreased and growth increased with stem size for both stands. Acer saccharum in all sizes and large Quercus dominated the older stand. The younger stand was dominated by Robinia pseudo-acacia with Acer saccharum also important. In the older plots small stems generally were clustered, intermediate-sized stems randomly distributed, and the largest stems regularly distributed. In the younger plot small stems were aggregated while larger ones were randomly distributed. Quercus regenerated well until the late 1800s, singly or in small groups, but few stems have become established since 1900. Quercus may need fires or grazing to regenerate successfully. Both stands are changing to increased dominance by Acer saccharum and other shade-tolerant species as they lose species (Robinia pseudo-acacia in the younger stand, Quercus in the older stand) more successful under past than present conditions

    Braking and Propulsion Phase Characteristics of Traditional and Accentuated Eccentric Loaded Back Squats

    Get PDF
    The purpose of this study was to examine the differences in braking and propulsion force-time characteristics and barbell velocity between traditional (TRAD) and accentuated eccentric loaded (AEL) back squats using various load combinations. Sixteen resistance-trained men participated in four separate testing sessions which included a one repetition maximum (1RM) back squat during the first session and three squat testing sessions. During the squat testing sessions, participants either performed sets of three repetitions of TRAD back squats each with 50, 60, 70, and 80% 1RM or performed the same loads with the addition of weight releasers that increased the total eccentric weight of the first repetition of each set to either 100 (AEL-MAX) or 110% 1RM (AEL-SUPRA). Braking and propulsion mean force, duration, and impulse as well as mean and peak barbell velocity were compared between each condition and load. Significantly greater braking impulses were produced during the AEL-MAX and AEL-SUPRA conditions compared to TRAD (p \u3c 0.03) with small-moderate effect sizes favoring AEL-SUPRA. No other significant differences existed among conditions for other braking, propulsion, or barbell velocity variables. AEL-MAX and AEL-SUPRA back squats may provide a greater braking stimulus compared to TRAD squats; however, the propulsion phase of the movement does not appear to be impacted. From a loading standpoint, larger and smaller load spreads may favor rapid and maximal force production characteristics, respectively. Further research on this topic is needed as a large portion of the braking stimulus experienced during AEL back squats may be influenced by relative strength

    Levetiracetam-loaded biodegradable polymer implants in the tetanus toxin model of temporal lobe epilepsy in rats

    Get PDF
    Approximately one-third of people with epilepsy receive insufficient benefit from currently available anticonvulsant medication, and some evidence suggests that this may be due to a lack of effective penetration into brain parenchyma. The current study investigated the ability of biodegradable polymer implants loaded with levetiracetam to ameliorate seizures following implantation above the motor cortex in the tetanus toxin model of temporal lobe epilepsy in rats. The implants led to significantly shorter seizures and a trend towards fewer seizures for up to 1 week. The results of this study indicate that drug-eluting polymer implants represent a promising evolving treatment option for intractable epilepsy. Future research is warranted to investigate issues of device longevity and implantation site

    The promise and peril of intensive-site-based ecological research: insights from the Hubbard Brook ecosystem study

    Get PDF
    Abstract. Ecological research is increasingly concentrated at particular locations or sites. This trend reflects a variety of advantages of intensive, site-based research, but also raises important questions about the nature of such spatially delimited research: how well does site based research represent broader areas, and does it constrain scientific discovery?We provide an overview of these issues with a particular focus on one prominent intensive research site: the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA. Among the key features of intensive sites are: long-term, archived data sets that provide a context for new discoveries and the elucidation of ecological mechanisms; the capacity to constrain inputs and parameters, and to validate models of complex ecological processes; and the intellectual cross-fertilization among disciplines in ecological and environmental sciences. The feasibility of scaling up ecological observations from intensive sites depends upon both the phenomenon of interest and the characteristics of the site. An evaluation of deviation metrics for the HBEF illustrates that, in some respects, including sensitivity and recovery of streams and trees from acid deposition, this site is representative of the Northern Forest region, of which HBEF is a part. However, the mountainous terrain and lack of significant agricultural legacy make the HBEF among the least disturbed sites in the Northern Forest region. Its relatively cool, wet climate contributes to high stream flow compared to other sites. These similarities and differences between the HBEF and the region can profoundly influence ecological patterns and processes and potentially limit the generality of observations at this and other intensive sites. Indeed, the difficulty of scaling up may be greatest for ecological phenomena that are sensitive to historical disturbance and that exhibit the greatest spatiotemporal variation, such as denitrification in soils and the dynamics of bird communities. Our research shows that end member sites for some processes often provide important insights into the behavior of inherently heterogeneous ecological processes. In the current era of rapid environmental and biological change, key ecological responses at intensive sites will reflect both specific local drivers and regional trends

    Amphiphysin IIm Is Required for Survival of Chlamydia pneumoniae in Macrophages

    Get PDF
    Macrophages play a critical role in both innate and acquired immunity because of their unique ability to internalize, kill, and degrade bacterial pathogens through the process of phagocytosis. The adaptor protein, amphiphysin IIm, participates in phagocytosis and is transiently associated with early phagosomes. Certain pathogens, including Chlamydia pneumoniae, have evolved mechanisms to subvert macrophage phagosome maturation and, thus, are able to survive within these cells. We report here that, although amphiphysin IIm is usually only transiently associated with the phagosome, it is indefinitely retained on vacuoles containing C. pneumoniae. Under these wild-type conditions, C. pneumoniae do not elicit significant nitric oxide (NO) production and are not killed. Abrogation of amphiphysin IIm function results in C. pneumoniae–induced NO production and in the sterilization of the vacuole. The data suggest that C. pneumoniae retains amphiphysin IIm on the vacuole to survive within the macrophage

    Diverse and Complex Muscle Spindle Afferent Firing Properties Emerge from Multiscale Muscle Mechanics

    Get PDF
    Despite decades of research, we lack a mechanistic framework capable of predicting how movement-related signals are transformed into the diversity of muscle spindle afferent firing patterns observed experimentally, particularly in naturalistic behaviors. Here, a biophysical model demonstrates that well-known firing characteristics of mammalian muscle spindle Ia afferents – including movement history dependence, and nonlinear scaling with muscle stretch velocity – emerge from first principles of muscle contractile mechanics. Further, mechanical interactions of the muscle spindle with muscle-tendon dynamics reveal how motor commands to the muscle (alpha drive) versus muscle spindle (gamma drive) can cause highly variable and complex activity during active muscle contraction and muscle stretch that defy simple explanation. Depending on the neuromechanical conditions, the muscle spindle model output appears to ‘encode’ aspects of muscle force, yank, length, stiffness, velocity, and/or acceleration, providing an extendable, multiscale, biophysical framework for understanding and predicting proprioceptive sensory signals in health and disease
    corecore