109 research outputs found
On the integral form of the motion equations for free surface flow
This work deals with a novel three-dimensional finite-volume non-hydrostatic shock-capturing model for the simulation of wave transformation processes and wave-structure interaction. The model is based on an integral formulation of the Navier-Stokes equations solved on a coordinate system in which the vertical coordinate is varying in time. A finite-volume shock-capturing numerical technique based on high order WENO reconstructions is adopted in order to discretize the fluid motion equations
3D free surface flow simulations based on the integral form of the equations of motion
This work deals with a novel three-dimensional finite-volume non-hydrostatic shock-capturing model for the simulation of wave transformation processes and wave-structure interaction. The model is based on an integral formulation of the Navier-Stokes equations solved on a coordinate system in which the vertical coordinate is varying in time. A finite-volume shock-capturing numerical technique based on high order WENO reconstructions is adopted in order to discretize the fluid motion equations
Mechanical properties of bilayer WS2 and Graphene-WS2 Hybrid composites by molecular dynamics simulations
In the present work, by using molecular dynamics (MD) simulations, we investigate the mechanical properties of different nanostructures that may be core elements in next generation flexible/wearable photovoltaic devices, namely double layer WS2nanosheets (DLNS), graphene/WS2(layer) composites and graphene/WS2nanotube (NT) composites. Our results reveal that the mechanical properties of DLNS deteriorate when compared to those of monolayer WS2. Owing to graphene's reinforcement action, the mechanical properties of graphene/WS2(layer) composite with both layers deformed are superior than those of WS2, even though inferior than those of bare graphene. If stress is applied only to the graphene layer, the graphene/WS2composite retains the most of the strength and toughness of monolayer graphene, decreasing the fracture strength and Young's modulus by only 9.7% and 16.3%, respectively. Similarly, in the case of the graphene/WS2NT composite the mechanical strength and toughness experience a reduction compared to monolayer graphene, specifically by 15% and 53% for fracture strength and Young's modulus, respectively. Considering the market's keen interest in nanomaterials, particularly van der Waals (vdW) ones, for flexible and wearable photovoltaic devices, the findings presented here will significantly enhance the effective utilization of vdW composites
Failure of multi-layer graphene coatings in acidic media
Being impermeable to all gases, graphene has been proposed as an effective ultrathin barrier film and protective coating. However, here it is shown how the gastight property of graphene-based coatings may indirectly lead to their catastrophic failure under certain conditions. When nickel coated with thick, high-quality chemical vapor deposited multilayered graphene is exposed to acidic solutions, a dramatic evolution of gas is observed at the coating-substrate interface. The gas bubbles grow and merge, eventually rupturing and delaminating the coating. This behavior, attributed to cathodic hydrogen evolution, can also occur spontaneously on a range of other technologically important metals and alloys based on iron, zinc, aluminum and manganese; this makes these findings relevant for practical applications of graphene-based coatings
Real-time oxide evolution of copper protected by graphene and boron nitride barriers
Applying protective or barrier layers to isolate a target item from the environment is a common approach to prevent or delay its degradation. The impermeability of two-dimensional materials such as graphene and hexagonal boron nitride (hBN) has generated a great deal of interest in corrosion and material science. Owing to their different electronic properties (graphene is a semimetal, whereas hBN is a wide-bandgap insulator), their protection behaviour is distinctly different. Here we investigate the performance of graphene and hBN as barrier coatings applied on copper substrates through a real-time study in two different oxidative conditions. Our findings show that the evolution of the copper oxidation is remarkably different for the two coating materials
- …