3,625 research outputs found
Restarting antidepressant treatment following early discontinuation : a primary care database study
Peer reviewedPostprin
Seasonal variation and impact of waste-water lagoons as larval habitat on the population dynamics of Culicoides sonorensis (Diptera:Ceratpogonidae) at two dairy farms in northern California.
The Sacramento (northern Central) Valley of California (CA) has a hot Mediterranean climate and a diverse ecological landscape that is impacted extensively by human activities, which include the intensive farming of crops and livestock. Waste-water ponds, marshes, and irrigated fields associated with these agricultural activities provide abundant larval habitats for C. sonorensis midges, in addition to those sites that exist in the natural environment. Within this region, C. sonorensis is an important vector of bluetongue (BTV) and related viruses that adversely affect the international trade and movement of livestock, the economics of livestock production, and animal welfare. To characterize the seasonal dynamics of immature and adult C. sonorensis populations, abundance was monitored intensively on two dairy farms in the Sacramento Valley from August 2012- to July 2013. Adults were sampled every two weeks for 52 weeks by trapping (CDC style traps without light and baited with dry-ice) along N-S and E-W transects on each farm. One farm had large operational waste-water lagoons, whereas the lagoon on the other farm was drained and remained dry during the study. Spring emergence and seasonal abundance of adult C. sonorensis on both farms coincided with rising vernal temperature. Paradoxically, the abundance of midges on the farm without a functioning waste-water lagoon was increased as compared to abundance on the farm with a waste-water lagoon system, indicating that this infrastructure may not serve as the sole, or even the primary larval habitat. Adult midges disappeared from both farms from late November until May; however, low numbers of parous female midges were detected in traps set during daylight in the inter-seasonal winter period. This latter finding is especially critical as it provides a potential mechanism for the "overwintering" of BTV in temperate regions such as northern CA. Precise documentation of temporal changes in the annual abundance and dispersal of Culicoides midges is essential for the creation of models to predict BTV infection of livestock and to develop sound abatement strategies
Glacier algae: a dark past and a darker future
“Glacier algae” grow on melting glacier and ice sheet surfaces across the cryosphere, causing the ice to absorb more solar energy and consequently melt faster, while also turning over carbon and nutrients. This makes glacier algal assemblages, which are typically dominated by just three main species, a potentially important yet under-researched component of the global biosphere, carbon, and water cycles. This review synthesizes current knowledge on glacier algae phylogenetics, physiology, and ecology. We discuss their significance for the evolution of early land plants and highlight their impacts on the physical and chemical supraglacial environment including their role as drivers of positive feedbacks to climate warming, thereby demonstrating their influence on Earth’s past and future. Four complementary research priorities are identified, which will facilitate broad advances in glacier algae research, including establishment of reliable culture collections, sequencing of glacier algae genomes, development of diagnostic biosignatures for remote sensing, and improved predictive modeling of glacier algae biological-albedo effects
Spectropolarimetry of the Classical T Tauri Star TW Hydrae
We present high resolution (R ~ 60,000) circular spectropolarimetry of the
classical T Tauri star TW Hydrae. We analyze 12 photospheric absorption lines
and measure the net longitudinal magnetic field for 6 consecutive nights. While
no net polarization is detected the first five nights, a significant
photospheric field of Bz = 149 \pm 33 G is found on the sixth night. To rule
out spurious instrumental polarization, we apply the same analysis technique to
several non-magnetic telluric lines, detecting no significant polarization. We
further demonstrate the reality of this field detection by showing that the
splitting between right and left polarized components in these 12 photospheric
lines shows a linear trend with Lande g-factor times wavelength squared, as
predicted by the Zeeman effect. However, this longitudinal field detection is
still much lower than that which would result if a pure dipole magnetic
geometry is responsible for the mean magnetic field strength of 2.6 kG
previously reported for TW Hya. We also detect strong circular polarization in
the He I 5876 and the Ca II 8498 emission lines, indicating a strong field in
the line formation region of these features. The polarization of the Ca II line
is substantially weaker than that of the He I line, which we interpret as due
to a larger contribution to the Ca II line from chromospheric emission in which
the polarization signals cancel. However, the presence of polarization in the
Ca II line indicates that accretion shocks on Classical T Tauri stars do
produce narrow emission features in the infrared triplet lines of Calcium.Comment: One tar file. The paper has 22 pages, 5 figures. Accepted by AJ on
Sep 10, 200
- …