159 research outputs found
Symmetries of the Energy-Momentum Tensor: Some Basic Facts
It has been pointed by Hall et al. [1] that matter collinations can be
defined by using three different methods. But there arises the question of
whether one studies matter collineations by using the ,
or or . These alternative
conditions are, of course, not generally equivalent. This problem has been
explored by applying these three definitions to general static spherically
symmetric spacetimes. We compare the results with each definition.Comment: 17 pages, accepted for publication in "Communications in Theoretical
Physics
A combinatorial cell-laden gel microarray for inducing osteogenic differentiation of human mesenchymal stem cells
Development of three dimensional (3D) microenvironments that direct stem cell differentiation into functional cell types remains a major challenge in the field of regenerative medicine. Here, we describe a new platform to address this challenge by utilizing a robotic microarray spotter for testing stem cell fates inside various miniaturized cell-laden gels in a systematic manner. To demonstrate the feasibility of our platform, we evaluated the osteogenic differentiation of human mesenchymal stem cells (hMSCs) within combinatorial 3D niches. We were able to identify specific combinations, that enhanced the expression of osteogenic markers. Notably, these ‘hit' combinations directed hMSCs to form mineralized tissue when conditions were translated to 3D macroscale hydrogels, indicating that the miniaturization of the experimental system did not alter stem cell fate. Overall, our findings confirmed that the 3D cell-laden gel microarray can be used for screening of different conditions in a rapid, cost-effective, and multiplexed manner for a broad range of tissue engineering applications
Amniotic fluid-derived stem cells for cardiovascular tissue engineering applications
Recent research has demonstrated that a population of stem cells can be isolated from amniotic fluid removed by amniocentesis that are broadly multipotent and non-tumorogenic. These amniotic fluid-derived stem cells (AFSC) could potentially provide an autologous cell source for treatment of congenital defects identified during gestation, particularly cardiovascular defects. In this review, the various methods of isolating, sorting and culturing AFSC are compared, along with techniques for inducing differentiation into cardiac myocytes and endothelial cells. Though research has not demonstrated complete and high yield cardiac differentiation, AFSC have been shown to effectively differentiate into endothelial cells and can effectively support cardiac tissue. Additionally, several tissue engineering and regenerative therapeutic approaches for the use of these cells in heart patches, injection after myocardial infarction, heart valves, vascularized scaffolds and blood vessels are summarized. These applications show great promise in the treatment of congenital cardiovascular defects, and further studies of isolation, culture, and differentiation of AFSC will help to develop their use for tissue engineering, regenerative medicine, and cardiovascular therapies
The astrometric Gaia-FUN-SSO observation campaign of 99 942 Apophis
Astrometric observations performed by the Gaia Follow-Up Network for Solar
System Objects (Gaia-FUN-SSO) play a key role in ensuring that moving objects
first detected by ESA's Gaia mission remain recoverable after their discovery.
An observation campaign on the potentially hazardous asteroid (99 942) Apophis
was conducted during the asteroid's latest period of visibility, from
12/21/2012 to 5/2/2013, to test the coordination and evaluate the overall
performance of the Gaia-FUN-SSO . The 2732 high quality astrometric
observations acquired during the Gaia-FUN-SSO campaign were reduced with the
Platform for Reduction of Astronomical Images Automatically (PRAIA), using the
USNO CCD Astrograph Catalogue 4 (UCAC4) as a reference. The astrometric
reduction process and the precision of the newly obtained measurements are
discussed. We compare the residuals of astrometric observations that we
obtained using this reduction process to data sets that were individually
reduced by observers and accepted by the Minor Planet Center. We obtained 2103
previously unpublished astrometric positions and provide these to the
scientific community. Using these data we show that our reduction of this
astrometric campaign with a reliable stellar catalog substantially improves the
quality of the astrometric results. We present evidence that the new data will
help to reduce the orbit uncertainty of Apophis during its close approach in
2029. We show that uncertainties due to geolocations of observing stations, as
well as rounding of astrometric data can introduce an unnecessary degradation
in the quality of the resulting astrometric positions. Finally, we discuss the
impact of our campaign reduction on the recovery process of newly discovered
asteroids.Comment: Accepted for publication in A&
LRS Bianchi type I universes exhibiting Noether symmetry in the scalar-tensor Brans-Dicke theory
Following up on hints of anisotropy in the cosmic microwave background
radiation (CMB) data, we investigate locally rotational symmetric (LRS) Bianchi
type I spacetimes with non-minimally coupled scalar fields. To single out
potentially more interesting solutions, we search for Noether symmetry in this
system. We then specialize to the Brans-Dicke (BD) field in such a way that the
Lagrangian becomes degenerate (nontrivial) and solve the equations for Noether
symmetry and the potential that allows it. Then we find the exact solutions of
the equations of motion in terms of three parameters and an arbitrary function.
We illustrate with families of examples designed to be generalizations of the
well-known power-expansion, exponential expansion and Big Rip models in the
Friedmann-Robertson-Walker (FRW) framework. The solutions display surprising
variation, a large subset of which features late-time acceleration as is
usually ascribed to dark energy (phantom or quintensence), and is consistent
with observational data.Comment: 25 pages, no figure, to appear in General Relativity and Gravitatio
Adult Cardiac Progenitor Cell Aggregates Exhibit Survival Benefit Both In Vitro and In Vivo
Background: A major hurdle in the use of exogenous stems cells for therapeutic regeneration of injured myocardium remains the poor survival of implanted cells. To date, the delivery of stem cells into myocardium has largely focused on implantation of cell suspensions. Methodology and Principal Findings: We hypothesize that delivering progenitor cells in an aggregate form would serve to mimic the endogenous state with proper cell-cell contact, and may aid the survival of implanted cells. Microwell methodologies allow for the culture of homogenous 3D cell aggregates, thereby allowing cell-cell contact. In this study, we find that the culture of cardiac progenitor cells in a 3D cell aggregate augments cell survival and protects against cellular toxins and stressors, including hydrogen peroxide and anoxia/reoxygenation induced cell death. Moreover, using a murine model of cardiac ischemia-reperfusion injury, we find that delivery of cardiac progenitor cells in the form of 3D aggregates improved in vivo survival of implanted cells. Conclusion: Collectively, our data support the notion that growth in 3D cellular systems and maintenance of cell-cell contact improves exogenous cell survival following delivery into myocardium. These approaches may serve as a strategy to improve cardiovascular cell-based therapies
Epidemiology, practice of ventilation and outcome for patients at increased risk of postoperative pulmonary complications
BACKGROUND Limited information exists about the epidemiology and outcome of surgical patients at increased risk of postoperative pulmonary complications (PPCs), and how intraoperative ventilation was managed in these patients.
OBJECTIVES To determine the incidence of surgical patients at increased risk of PPCs, and to compare the intraoperative ventilation management and postoperative outcomes with patients at low risk of PPCs.
DESIGN This was a prospective international 1-week observational study using the ‘Assess Respiratory Risk in Surgical Patients in Catalonia risk score’ (ARISCAT score) for PPC for risk stratification.
PATIENTS AND SETTING Adult patients requiring intraoperative ventilation during general anaesthesia for surgery in 146 hospitals across 29 countries.
MAIN OUTCOME MEASURES The primary outcome was the incidence of patients at increased risk of PPCs based on the ARISCAT score. Secondary outcomes included intraoperative ventilatory management and clinical outcomes.
RESULTS A total of 9864 patients fulfilled the inclusion criteria. The incidence of patients at increased risk was 28.4%. The most frequently chosen tidal volume (VT) size was 500 ml, or 7 to 9 ml kg1 predicted body weight, slightly lower in patients at increased risk of PPCs. Levels of positive end-expiratory pressure (PEEP) were slightly higher in patients at increased risk of PPCs, with 14.3% receiving more than 5 cmH2O PEEP compared with 7.6% in patients at low risk of PPCs (P < 0.001). Patients with a predicted preoperative increased risk of PPCs developed PPCs more frequently: 19 versus 7%, relative risk (RR) 3.16 (95% confidence interval 2.76 to 3.61), P < 0.001) and had longer hospital stays. The only ventilatory factor associated with the occurrence of PPCs was the peak pressure.
CONCLUSION The incidence of patients with a predicted increased risk of PPCs is high. A large proportion of patients receive high VT and low PEEP levels. PPCs occur frequently in patients at increased risk, with worse clinical outcome
- …