39 research outputs found

    ERK5 MAP Kinase Regulates Neurogenin1 during Cortical Neurogenesis

    Get PDF
    The commitment of multi-potent cortical progenitors to a neuronal fate depends on the transient induction of the basic-helix-loop-helix (bHLH) family of transcription factors including Neurogenin 1 (Neurog1). Previous studies have focused on mechanisms that control the expression of these proteins while little is known about whether their pro-neural activities can be regulated by kinase signaling pathways. Using primary cultures and ex vivo slice cultures, here we report that both the transcriptional and pro-neural activities of Neurog1 are regulated by extracellular signal-regulated kinase (ERK) 5 signaling in cortical progenitors. Activation of ERK5 potentiated, while blocking ERK5 inhibited Neurog1-induced neurogenesis. Furthermore, endogenous ERK5 activity was required for Neurog1-initiated transcription. Interestingly, ERK5 activation was sufficient to induce Neurog1 phosphorylation and ERK5 directly phosphorylated Neurog1 in vitro. We identified S179/S208 as putative ERK5 phosphorylation sites in Neurog1. Mutations of S179/S208 to alanines inhibited the transcriptional and pro-neural activities of Neurog1. Our data identify ERK5 phosphorylation of Neurog1 as a novel mechanism regulating neuronal fate commitment of cortical progenitors

    Plasma-enhanced chemical vapour deposition of amorphous Se films

    No full text
    The preparation of layers of amorphous Se by plasma-enhanced CVD using the hydride H2Se as precursor gas is described. Using a mixture of 15 vol.% H2Se in H2, partly crystallized films were obtained. Information concerning the structure of the films was obtained from Raman spectroscopy. The spectra of amorphous Se indicated that the dominant molecular structure is the eight-membered ring and/or a chain with Se8 molecular fragments. The optical transmission spectrum was recorded at different temperatures in the range 77-300 K. The optical bandgap ET was calculated from the optical absorption coefficients Ξ± using Tauc law : Ξ±Ξ½=C(hΞ½-Er)2, where hΞ½ is the photon energy. The temperature dependence of ET can be approximated by a linear relation : [MATH]
    corecore