69 research outputs found

    Toward Sufficient Spatial-Frequency Interaction for Gradient-aware Underwater Image Enhancement

    Full text link
    Underwater images suffer from complex and diverse degradation, which inevitably affects the performance of underwater visual tasks. However, most existing learning-based Underwater image enhancement (UIE) methods mainly restore such degradations in the spatial domain, and rarely pay attention to the fourier frequency information. In this paper, we develop a novel UIE framework based on spatial-frequency interaction and gradient maps, namely SFGNet, which consists of two stages. Specifically, in the first stage, we propose a dense spatial-frequency fusion network (DSFFNet), mainly including our designed dense fourier fusion block and dense spatial fusion block, achieving sufficient spatial-frequency interaction by cross connections between these two blocks. In the second stage, we propose a gradient-aware corrector (GAC) to further enhance perceptual details and geometric structures of images by gradient map. Experimental results on two real-world underwater image datasets show that our approach can successfully enhance underwater images, and achieves competitive performance in visual quality improvement

    MIRACLE: Multi-task Learning based Interpretable Regulation of Autoimmune Diseases through Common Latent Epigenetics

    Full text link
    DNA methylation is a crucial regulator of gene transcription and has been linked to various diseases, including autoimmune diseases and cancers. However, diagnostics based on DNA methylation face challenges due to large feature sets and small sample sizes, resulting in overfitting and suboptimal performance. To address these issues, we propose MIRACLE, a novel interpretable neural network that leverages autoencoder-based multi-task learning to integrate multiple datasets and jointly identify common patterns in DNA methylation. MIRACLE's architecture reflects the relationships between methylation sites, genes, and pathways, ensuring biological interpretability and meaningfulness. The network comprises an encoder and a decoder, with a bottleneck layer representing pathway information as the basic unit of heredity. Customized defined MaskedLinear Layer is constrained by site-gene-pathway graph adjacency matrix information, which provides explainability and expresses the site-gene-pathway hierarchical structure explicitly. And from the embedding, there are different multi-task classifiers to predict diseases. Tested on six datasets, including rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, inflammatory bowel disease, psoriasis, and type 1 diabetes, MIRACLE demonstrates robust performance in identifying common functions of DNA methylation across different phenotypes, with higher accuracy in prediction dieseases than baseline methods. By incorporating biological prior knowledge, MIRACLE offers a meaningful and interpretable framework for DNA methylation data analysis in the context of autoimmune diseases

    Impingement and Mixing Dynamics of Micro-Droplets on a Solid Surface

    Get PDF
    Supported from National Natural Science Foundation of China (No.22078008) and the Fundamental Research Funds for the Central Universities (XK1802-1). Acknowledgement The authors gratefully acknowledge the financial support from National Natural Science Foundation of China (No.22078008) and the Fundamental Research Funds for the Central Universities (XK1802-1).Peer reviewedPostprin

    Deformation and breakup of single drop in laminar and transitional jet flows

    Get PDF
    The authors gratefully acknowledge the financial support from the National Key R&D Program of China (2017YFB0306701), National Natural Science Foundation of China (No.21676007),the Fundamental Research Funds for the Central Universities (XK1802-1), and Scientific Research and Technology Development Projects of China National Petroleum Corporation (No. 2016B-2605).Peer reviewedPostprin

    LinkLouvain: Link-Aware A/B Testing and Its Application on Online Marketing Campaign

    Full text link
    A lot of online marketing campaigns aim to promote user interaction. The average treatment effect (ATE) of campaign strategies need to be monitored throughout the campaign. A/B testing is usually conducted for such needs, whereas the existence of user interaction can introduce interference to normal A/B testing. With the help of link prediction, we design a network A/B testing method LinkLouvain to minimize graph interference and it gives an accurate and sound estimate of the campaign's ATE. In this paper, we analyze the network A/B testing problem under a real-world online marketing campaign, describe our proposed LinkLouvain method, and evaluate it on real-world data. Our method achieves significant performance compared with others and is deployed in the online marketing campaign.Comment: Accepted by the Industrial & Practitioner Track of the 26th International Conference on Database Systems for Advanced Applications (DASFAA 2021

    A Pitch Angle Controller Based on Novel Fuzzy-PI Control for Wind Turbine Load Reduction

    Get PDF
    A novel fuzzy rule is proposed to adopt a positive pitch strategy when the error between the measured and rated generator speed becomes large and continues to increase, and to adopt a negative pitch strategy when the error is small. The improved approach is introduced into the normal Fuzzy-Proportional-Integral (Fuzzy-PI) control strategy by dividing the fuzzy rules into four areas and analyzing the design method for each area. Furthermore, a low pass filter is used to reduce the ultimate loads of the pitch driver caused by the novel fuzzy rules. The modeling of the wind turbine load under turbulent wind conditions is conducted in GH Bladed, and MATLAB/Simulink is used to interact with the modeling to verify the novel Fuzzy-PI control. The results show that, compared with normal Fuzzy-PI control, the novel Fuzzy-PI control can greatly reduce the ultimate loads and fatigue loads of the pitch driver. The novel Fuzzy-PI control not only reduces the extremum of power deviation, but also decreases some ultimate loads and fatigue loads of the tower base and the blade root. It can reduce these loads by up to 21.53% under the normal turbulent wind condition and by up to 18.14% under the extreme turbulent wind condition

    The Frequency-Dependent Aerobic Exercise Effects of Hypothalamic GABAergic Expression and Cardiovascular Functions in Aged Rats

    Get PDF
    A decline in cardiovascular modulation is a feature of the normal aging process and associated with cardiovascular diseases (CVDs) such as hypertension and stroke. Exercise training is known to promote cardiovascular adaptation in young animals and positive effects on motor and cognitive capabilities, as well as on brain plasticity for all ages in mice. Here, we examine the question of whether aerobic exercise interventions may impact the GABAergic neurons of the paraventricular nucleus (PVN) in aged rats which have been observed to have a decline in cardiovascular integration function. In the present study, young (2 months) and old (24 months) male Wistar rats were divided into young control (YC), old sedentary, old low frequency exercise (20 m/min, 60 min/day, 3 days/week, 12 weeks) and old high frequency exercise (20 m/min, 60 min/day, 5 days/week, 12 weeks). Exercise training indexes were obtained, including resting heart rate (HR), blood pressure (BP), plasma norepinephrine (NE), and heart weight (HW)-to-body weight (BW) ratios. The brain was removed and processed according to the immunofluorescence staining and western blot used to analyze the GABAergic terminal density, the proteins of GAD67, GABAA receptor and gephyrin in the PVN. There were significant changes in aged rats compared with those in the YC. Twelve weeks aerobic exercise training has volume-dependent ameliorated effects on cardiovascular parameters, autonomic nervous activities and GABAergic system functions. These data suggest that the density of GABAergic declines in the PVN is associated with imbalance in autonomic nervous activities in normal aging. Additionally, aerobic exercise can rescue aging-related an overactivity of the sympathetic nervous system and induces modifications the resting BP and HR to lower values via improving the GABAergic system in the PVN
    corecore