301 research outputs found
Precompaction irradiation effects: Particles from an early active sun?
Two recent studies have shown that solar flare irradiated grains from Murchison and Kapoeta have excess spallogenic Ne-21 compared to unirradiated grains, indicating large precompaction particle irradiation effects. The quantity of cosmogenic neon in these grains presents serious difficulties for either galactic cosmic ray or normal solar flare sources. In the first study it was suggested that the effect might be the result of exposure to an early active sun. The more recent experiment both confirms the earlier results and provides constraints on the characteristic energy spectrum on the irradiation. The first results were obtained from Murchison olivines and Kapoeta pyroxenes by mass spectrometric analysis of sets of grains selected on the basis of the presence or absence of solar flare particle tracks. In the second work plagioclase feldspar grains from Kapoeta were studied
Boundary conditions on the early Sun from ancient cosmogenic neon in meteorites
Isotopic analysis of neon from individual grains of the meteorites Murchison (CM) and Kapoeta (howardite) shows large enrichments of cosmogenic neon in grains with solar flare tracks. The quantity of this component is incompatible with galactic cosmic ray or solar cosmic ray irradiation under present conditions and is attributed to irradiation by energetic flares from an early active Sun. Handpicked grains from each meteorite were grouped according to the presence or absence of solar flare heavy ion tracks, and these four samples were analyzed with an ion counting noble gas mass spectrometer
Exposure Histories of Yamato Shergottites.
第2回極域科学シンポジウム/第34回南極隕石シンポジウム 11月18日(金) 国立国語研究所 2階講
Evidence in meteorites for an active early Sun
The amounts of neon-21 found in meteorite particles indicate that the Sun experienced a period of intense solar flare activity approximately 4.5 billion years ago
Update on terrestrial ages and pairing studies of Antarctic meteorites.
第2回極域科学シンポジウム/第34回南極隕石シンポジウム 11月17日(木) 国立国語研究所 2階講
Measurements of proton-induced production cross sections for Cl-36 from Ca and K
Production cross sections for Cl-36 (half-life= 3.01 x 10(exp 5) y) have been measured for the nat.K(p,x), 39 K(p,x), nat.Ca(p,x) and Ca-40(p,x) reactions up to 40 MeV. The results of nat.Ca(p,x) reaction are generally consistent with measurements performed at somewhat higher energies. With the completion of these measurements it is now possible to proceed with model calculations of the solar cosmic ray (SCR) flux over the last 400 ky based on measurements of lunar surface materials
Recommended from our members
Cosmogenic nuclides in the solar gas-rich H3-6 chondrite breccia Frontier Mountain 90174
We re-evaluated the cosmic-ray exposure history of the H36 chondrite shower Frontier Mountain (FRO) 90174, which previously was reported to have a simple exposure history, an irradiation time of about 7 Ma, and a pre-atmospheric radius of 80-100 cm (Welten et al. 2001). Here we measured the concentrations and isotopic compositions of He, Ne, and Ar in 8 aliquots of 6 additional fragments of this shower, and 10Be and 26Al in the stone fractions of seven fragments. The radionuclide concentrations in the stone fractions, combined with those in the metal fractions, confirm that all samples are fragments of the FRO 90174 shower. Four of the fragments contain solarwind- implanted noble gases with a solar 20Ne/22Ne ratio of ~12.0, indicating that FRO 90174 is a regolith breccia. The concentrations of solar gases and cosmogenic 21Ne in the samples analyzed by us and by Welten et al. (2001) overlap with those of the FRO H-chondrites from the 1984 season, suggesting that many of these samples are also part of the large FRO 90174 chondrite shower. The cosmogenic 21Ne concentrations in FRO 90174 show no simple correlation with 10Be and 26Al activities. We found 21Ne excesses between 0.3-1.1 x 10^(-8) cm3 STP/g in 6 of the 17 samples. Since excess 21Ne and trapped solar gases are not homogeneously distributed, i.e., we found in one fragment aliquots with and without excess 21Ne and solar 20Ne, we conclude that excess 21Ne is due to GCR irradiation of the regolith before compaction of the FRO 90174 object. Therefore, the chondrite shower FRO 90174 did not simply experience an exposure history, but some material was already irradiated at the surface of an asteroid leading to excess 21Ne. This excess 21Ne is correlated to implanted solar gases, clearly indicating that both processes occurred on the regolith.The Meteoritics & Planetary Science archives are made available by the Meteoritical Society and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform February 202
Recommended from our members
Exposure Histories of Lunar Meteorites Northwest Africa 032 and DHOFAR 081
Recent additions to the list of lunar meteorites include Northwest Africa (NWA) 032 and Dhofar 081. NWA 032 is an unbrecciated basalt, found in Morocco; Dhofar 081 is a fragmented feldspathic breccia, found in Oman. Our goal is the determination of the cosmic ray exposure history of these objects. Most lunar meteorites have complex cosmic ray exposure histories, having been exposed both at some depth on the lunar surface (2{pi} irradiation) before their ejection and as small bodies in space (4{pi} irradiation) during transport from the Moon to the Earth. These exposures were then followed by residence on the Earth's surface, the terrestrial residence time. Unraveling the complex history of these objects requires the measurement of at least four cosmogenic nuclides. The specific goals of these measurements are to constrain the depth of the sample at the time of ejection from the Moon, the transit time from the time of ejection to the time of capture by the Earth, and the residence time on the Earth's surface. These exposure durations in conjunction with the sample depth on the Moon can then be used to model impact and ejection mechanisms. To investigate the complex exposure histories of lunar meteorites, we measured cosmogenic nuclides, {sup 36}Cl (half-life = 3.01 x 10{sup 5} yr), {sup 26}Al (7.05 x 10{sup 5} yr), and {sup 10}Be (1.5 x 10{sup 6} yr) in NWA 032 and Dhofar 081. The measurements of {sup 41}Ca (1.04 x 10{sup 5} yr) are in progress
Depth profile of 10Be in the West Antarctic Ice Sheet Divide ice core
第2回極域科学シンポジウム 氷床コアセッション 11月16日(水) 国立極地研究所 2階大会議
Holocene Earthquakes and Late Pleistocene Slip-Rate Estimates on the Wassuk Range Fault Zone, Nevada
The Wassuk Range fault zone is an 80‐km‐long, east‐dipping, high‐angle normal fault that flanks the eastern margin of the Wassuk Range in central Nevada. Observations from two alluvial fan systems truncated by the fault yield information on the vertical slip rate and Holocene earthquake history along the range front. At the apex of the Rose Creek alluvial fan, radiocarbon dating of offset stratigraphy exposed in two fault trenches shows that multiple earthquakes resulted in 7.0 m of vertical offset along the fault since ∼9400 cal B.P. These data yield a Holocene vertical slip rate of 0.7±0.1 mm/yr. The south trench exposure records at least two faulting events since ∼9400 cal B.P., with the most recent displacement postdating ∼2810 cal B.P. The north trench exposure records an ∼1 m offset between ∼610 cal B.P. and A.D. ∼1850, a 1.3‐m minimum offset prior to ∼1460 cal B.P., and one earlier undated earthquake of a similar size. Variations in stratigraphy and limited datable material preclude a unique correlation of paleoevents between the two trenches. Approximately 25 km north, the range‐front fault has truncated and uplifted a remnant of the Penrod Canyon fan by \u3e40 m since the surface was deposited ∼113 ka, based on cosmogenic dating of two large boulders. These data allow an estimate of the minimum late Pleistocene vertical slip rate at \u3e0.3–0.4 mm/yr for the Wassuk Range fault zone
- …