225 research outputs found
The IPRS Image Processing and Pattern Recognition System.
IPRS is a freely available software system which consists of about 250 library functions in C, and a set of application programs. It is designed to run under UNIX and comes with full source code, system manual pages, and a comprehensive user's and programmer's guide. It is intended for use by researchers in human vision, pattern recognition, image processing, machine vision and machine learning
On the automated interpretation and indexing of American football
This work combines natural language understanding and image processing with incremental learning to develop a system that can automatically interpret and index American Football. We have developed a model for representing spatio-temporal characteristics of multiple objects in dynamic scenes in this domain. Our representation combines expert knowledge, domain knowledge, spatial knowledge and temporal knowledge. We also present an incremental learning algorithm to improve the knowledge base as well as to keep previously developed concepts consistent with new data. The advantages of the incremental learning algorithm are that is that it does not split concepts and it generates a compact conceptual hierarchy which does not store instances
Approximating the problem, not the solution: An alternative view of point set matching
This work discusses the issue of approximation in point set matching. In general, one may have two classes of approximations when tackling a matching problem: (1) an algorithmic approximation which consists in using suboptimal procedures to infer the assignment, and (2), a representational approximation which involves a simplified and suboptimal model for the original data. Matching techniques have typically relied on the first approach by retaining the complete model and using suboptimal techniques to solve it. In this paper, we show how a technique based on using exact inference in simple Graphical Models, an instance of the second class, can significantly outperform instances of techniques from the first class. We experimentally compare this method with well-known Spectral and Relaxation methods, which are exemplars of the first class. We have performed experiments with synthetic and real-world data sets which reveal significant performance improvement in a wide operating range
Using Twitter to learn about the autism community
Considering the raising socio-economic burden of autism spectrum disorder
(ASD), timely and evidence-driven public policy decision making and
communication of the latest guidelines pertaining to the treatment and
management of the disorder is crucial. Yet evidence suggests that policy makers
and medical practitioners do not always have a good understanding of the
practices and relevant beliefs of ASD-afflicted individuals' carers who often
follow questionable recommendations and adopt advice poorly supported by
scientific data. The key goal of the present work is to explore the idea that
Twitter, as a highly popular platform for information exchange, could be used
as a data-mining source to learn about the population affected by ASD -- their
behaviour, concerns, needs etc. To this end, using a large data set of over 11
million harvested tweets as the basis for our investigation, we describe a
series of experiments which examine a range of linguistic and semantic aspects
of messages posted by individuals interested in ASD. Our findings, the first of
their nature in the published scientific literature, strongly motivate
additional research on this topic and present a methodological basis for
further work.Comment: Social Network Analysis and Mining, 201
Generalization of form in visual pattern classification.
Human observers were trained to criterion in classifying compound Gabor signals with sym- metry relationships, and were then tested with each of 18 blob-only versions of the learning set. General- ization to dark-only and light-only blob versions of the learning signals, as well as to dark-and-light blob versions was found to be excellent, thus implying virtually perfect generalization of the ability to classify mirror-image signals. The hypothesis that the learning signals are internally represented in terms of a 'blob code' with explicit labelling of contrast polarities was tested by predicting observed generalization behaviour in terms of various types of signal representations (pixelwise, Laplacian pyramid, curvature pyramid, ON/OFF, local maxima of Laplacian and curvature operators) and a minimum-distance rule. Most representations could explain generalization for dark-only and light-only blob patterns but not for the high-thresholded versions thereof. This led to the proposal of a structure-oriented blob-code. Whether such a code could be used in conjunction with simple classifiers or should be transformed into a propo- sitional scheme of representation operated upon by a rule-based classification process remains an open question
An Online Discriminative Approach to Background Subtraction
We present a simple, principled approach to detecting foreground objects in video sequences in real-time. Our method is based on an on-line discriminative learning technique that is able to cope with illumination changes due to discontinuous switching, or illumination drifts caused by slower processes such as varying time of the day. Starting from a discriminative learning principle, we derive a training algorithm that, for each pixel, computes a weighted linear combination of selected past observations with time-decay. We present experimental results that show the proposed approach outperforms existing methods on both synthetic sequences and real video data
Low-cost interactive active monocular range finder
This paper describes a low-cost interactive active monocular range finder and illustrates the effect of introducing interactivity to the range acquisition process. The range finder consists of only one camera and a laser pointer, to which three LEDs are attached. When a user scans the laser along surfaces of objects, the camera captures the image of spots (one from the laser, and the others from LEDs), and triangulation is carried out using the camera\u27s viewing direction and the optical axis of the laser. The user interaction allows the range finder to acquire range data in which the sampling rate varies across the object depending on the underlying surface structures. Moreover, the processes of separating objects from the background and/or finding parts in the object can be achieved using the operator\u27s knowledge of the objects
Combining NL processing and video data to query American football
We explore the use of natural language understanding and image processing to index and query American Football tapes. We present a model for representing spatio-temporal characteristics of multiple objects in dynamic scenes in this domain, and a recognition system which uses the model to recognise American Football plays.<br /
Improved estimation of hidden Markov model parameters from multiple observation sequences
The huge popularity of Hidden Markov models in pattern recognition is due to the ability to 'learn' model parameters from an observation sequence through Baum-Welch and other re-estimation procedures. In the case of HMM parameter estimation from an ensemble of observation sequences, rather than a single sequence, we require techniques for finding the parameters which maximize the likelihood of the estimated model given the entire set of observation sequences. The importance of this study is that HMMs with parameters estimated from multiple observations are shown to be many orders of magnitude more probable than HMM models learned from any single observation sequence - thus the effectiveness of HMM 'learning' is greatly enhanced. In this paper, we present techniques that usually find models significantly more likely than Rabiner's well-known method on both seen and unseen sequences
Symbolic representation and distributed matching strategies for schematics
This paper describes object-centered symbolic representation and distributed matching strategies of 3D objects in a schematic form which occur in engineering drawings and maps. The object-centered representation has a hierarchical structure and is constructed from symbolic representations of schematics. With this representation, two independent schematics representing the same object can be matched. We also consider matching strategies using distributed algorithms. The object recognition is carried out with two matching methods: (1) matching between an object model and observed data at the lowest level of the hierarchy, and (2) constraints propagation. The first is carried out with symbolic Hopfield-type neural networks and the second is achieved via hierarchical winner-takes-all algorithms<br /
- …