321 research outputs found

    Modelling plasticity of unsaturated soils in a thermodynamically consistent framework

    Get PDF
    Constitutive equations of unsaturated soils are often derived in a thermodynamically consistent framework through the use a unique 'effective' interstitial pressure. This later is naturally chosen as the space averaged interstitial pressure. However, experimental observations have revealed that two stress state variables were needed to describe the stress-strain-strength behaviour of unsaturated soils. The thermodynamics analysis presented here shows that the most general approach to the behaviour of unsaturated soils actually requires three stress state variables: the suction, which is required to describe the retention properties of the soil and two effective stresses, which are required to describe the soil deformation at water saturation held constant. Actually, it is shown that a simple assumption related to internal deformation leads to the need of a unique effective stress to formulate the stress-strain constitutive equation describing the soil deformation. An elastoplastic framework is then presented and it is finally shown that the Barcelona Basic Model, a commonly accepted model for unsaturated soils, as well as all models deriving from it, appear as special extreme cases of the thermodynamic framework proposed here

    Wave motion in elastic cracked composites

    Get PDF
    We study the scattering of elastic waves by fiber reinforced composites with interface cracks . In the long wave approximation, by means of a perturbation method, we derived in a closed foi-in the scattering section for an isolated fiber, partially debonded from the matrix, Using a homogenization procedure we extend the analysis to random distributions of inclusions and cracks . We show that the cracked composite behaves like an anisotropic viscoelastic material.On étudie la diffraction des ondes élastiques par des composites fibrés fissurés aux interfaces . Dans l'approximation des ondes longues, par une méthode de perturbation, on détermine analytiquement la section efficace pour une fibre isolée, partiellement désolidarisée de la matrice . Par une technique d'homogénéisation, on étend l'analyse à des distributions aléatoires d'inclusions et de fissures . On montre alors que le matériau composite fissuré se comporte comme un matériau viscoélastique anisotrope

    A computational continuum model of poroelastic beds

    Full text link

    Fracture Propagation Driven by Fluid Outflow from a Low-permeability Aquifer

    Full text link
    Deep saline aquifers are promising geological reservoirs for CO2 sequestration if they do not leak. The absence of leakage is provided by the caprock integrity. However, CO2 injection operations may change the geomechanical stresses and cause fracturing of the caprock. We present a model for the propagation of a fracture in the caprock driven by the outflow of fluid from a low-permeability aquifer. We show that to describe the fracture propagation, it is necessary to solve the pressure diffusion problem in the aquifer. We solve the problem numerically for the two-dimensional domain and show that, after a relatively short time, the solution is close to that of one-dimensional problem, which can be solved analytically. We use the relations derived in the hydraulic fracture literature to relate the the width of the fracture to its length and the flux into it, which allows us to obtain an analytical expression for the fracture length as a function of time. Using these results we predict the propagation of a hypothetical fracture at the In Salah CO2 injection site to be as fast as a typical hydraulic fracture. We also show that the hydrostatic and geostatic effects cause the increase of the driving force for the fracture propagation and, therefore, our solution serves as an estimate from below. Numerical estimates show that if a fracture appears, it is likely that it will become a pathway for CO2 leakage.Comment: 21 page

    Phase coexistence in consolidating porous media

    Full text link
    The appearence of the fluid-rich phase in saturated porous media under the effect of an external pressure is investigated. For this purpose we introduce a two field second gradient model allowing the complete description of the phenomenon. We study the coexistence profile between poor and rich fluid phases and we show that for a suitable choice of the parameters non-monotonic interfaces show-up at coexistence

    A large-strain radial consolidation theory for soft clays improved by vertical drains

    Get PDF
    A system of vertical drains with combined vacuum and surcharge preloading is an effective solution for promoting radial flow, accelerating consolidation. However, when a mixture of soil and water is deposited at a low initial density, a significant amount of deformation or surface settlement occurs. Therefore, it is necessary to introduce large-strain theory, which has been widely used to manage dredged disposal sites in one-dimensional theory, into radial consolidation theory. A governing equation based on Gibson's large-strain theory and Barron's free-strain theory incorporating the radial and vertical flows, the weight of the soil, variable hydraulic conductivity and compressibility during the consolidation process is therefore presented

    Recursive double-size fixed precision arithmetic

    Get PDF
    International audienceThis work is a part of the SHIVA (Secured Hardware Immune Versatile Architecture) project whose purpose is to provide a programmable and reconfigurable hardware module with high level of security. We propose a recursive double-size fixed precision arithmetic called RecInt. Our work can be split in two parts. First we developped a C++ software library with performances comparable to GMP ones. Secondly our simple representation of the integers allows an implementation on FPGA. Our idea is to consider sizes that are a power of 2 and to apply doubling techniques to implement them efficiently: we design a recursive data structure where integers of size 2^k, for k>k0 can be stored as two integers of size 2^{k-1}. Obviously for k<=k0 we use machine arithmetic instead (k0 depending on the architecture)

    A stabilized finite element method for finite-strain three-field poroelasticity

    Get PDF
    We construct a stabilized finite-element method to compute flow and finitestrain deformations in an incompressible poroelastic medium. We employ a three- field mixed formulation to calculate displacement, fluid flux and pressure directly and introduce a Lagrange multiplier to enforce flux boundary conditions. We use a low order approximation, namely, continuous piecewise-linear approximation for the displacements and fluid flux, and piecewise-constant approximation for the pressure. This results in a simple matrix structure with low bandwidth. The method is stable in both the limiting cases of small and large permeability. Moreover, the discontinuous pressure space enables efficient approximation of steep gradients such as those occurring due to rapidly changing material coefficients or boundary conditions, both of which are commonly seen in physical and biological applications

    Stochastic particle packing with specified granulometry and porosity

    Full text link
    This work presents a technique for particle size generation and placement in arbitrary closed domains. Its main application is the simulation of granular media described by disks. Particle size generation is based on the statistical analysis of granulometric curves which are used as empirical cumulative distribution functions to sample from mixtures of uniform distributions. The desired porosity is attained by selecting a certain number of particles, and their placement is performed by a stochastic point process. We present an application analyzing different types of sand and clay, where we model the grain size with the gamma, lognormal, Weibull and hyperbolic distributions. The parameters from the resulting best fit are used to generate samples from the theoretical distribution, which are used for filling a finite-size area with non-overlapping disks deployed by a Simple Sequential Inhibition stochastic point process. Such filled areas are relevant as plausible inputs for assessing Discrete Element Method and similar techniques
    • …
    corecore