99 research outputs found

    Measurable therapeutic antibody in serum as potential predictive factor of response to anti-CD38 therapy in non-IgG-k myeloma patients

    Get PDF
    Multiple myeloma (MM) is a hematologic malignancy characterized by abnormal plasma cell proliferation in the bone marrow. Recent advancements in anti-CD38 monoclonal antibody therapies, such as daratumumab and isatuximab, have significantly improved MM patient survival. However, the lack of predictive factors of response to these therapies remains a challenge. Notably, anti-CD38 antibodies can interfere with laboratory tests, complicating response assessment. We conducted a retrospective study to evaluate the association between the appearance of positive IgGk (therapeutic antibody) on immunofixation/immunosubtraction (IF) and clinical parameters in 87 non-IgGk MM patients treated with anti-CD38 therapy. Positive IgGk IF was observed in 42 patients after a median of three treatment courses. Patients with positive IgGk IF had higher rates of complete/very good partial responses (p = 0.03) and improved progression-free survival (median not reached vs. 21.83 months, p < 0.01). High BMI (p = 0.03), higher hemoglobin (p = 0.02), lower CRP (p = 0.04), and lower monoclonal protein levels (p = 0.03) were associated with positive IgGk IF. Our findings suggest that monitoring therapeutic antibody appearance on IF may predict and optimize anti-CD38 therapy in MM. Potential explanations include the impact of patient factors (e.g. BMI) on drug pharmacokinetics, the relationship between antibody levels and immune response, and the influence of tumor biology. Further research is needed to elucidate the underlying mechanisms and clinical utility of this biomarker. Nonetheless, our results highlight the importance of considering therapeutic antibody detection when interpreting laboratory tests and managing MM patients receiving anti-CD38 therapies

    Sicilian semi- and supercentenarians: identification of age-related T-cell immunophenotype to define longevity trait

    Get PDF
    The immunophenotype of oldest centenarians, i.e. semi- and supercentenarians, could provide important information about their ability to adapt to factors associated with immune changes, including ageing per se and chronic Cytomegalovirus infection. We investigated, by flow cytometry, variations in percentages and absolute numbers of immune cell subsets, focusing on T cells, and pro-inflammatory parameters in a cohort of 28 women and 26 men (age range 19–110 years). We observed variability in hallmarks of immunosenescence related to age and Cytomegalovirus serological status. The eight oldest centenarians showed the lowest percentages of naïve T cells, due to their age, and the highest percentages of T-effector memory cells re-expressing CD45RA (TEMRA), according to their cytomegalovirus status, and high levels of serum pro-inflammatory parameters, although their means were lower than that of remaining 90+ donors. Some of them showed CD8 naïve and TEMRA percentages, and exhaustion/pro-inflammatory markers comparable to the younger ones. Our study supports the suggestion that immune ageing, especially of oldest centenarians, exhibits great variability that is not only attributable to a single contributor but should also be the full result of a combination of several factors. Everyone ages differently because he/she is unique in genetics and experience of life and this applies even more to the immune system; everybody has had a different immunological history. Furthermore, our findings on inflammatory markers, TEMRA and CMV seropositivity in centenarians, discussed in the light of the most recent literature, suggest that these changes might be not unfavourable for centenarians, and in particular for the oldest ones

    Aberrant methylation within RUNX3 CpG island associated with the nuclear and mitochondrial microsatellite instability in sporadic gastric cancers. Results of a GOIM (Gruppo Oncologico dell'Italia Meridionale) prospective study.

    Get PDF
    Gastric cancer (GC) development is a multistep process, during which numerous alterations accumulate in nuclear and mitochondrial DNA. A deficiency of repair machinery brings about an accumulation of errors introduced within simple repetitive microsatellite sequences during replication of DNA. Aberrant methylation is related to microsatellite instability (MSI) by the silencing of the hMLH1 gene. The aim of this study is to investigate a possible relationship between the RUNX3 promoter methylation, nuclear microsatellite instability (nMSI) and mitochondrial microsatellite instability (mtMSI), in order to clarify its biological role in GC

    TP53 mutations and S-phase fraction but not DNA-ploidy are independent prognostic indicators in laryngeal squamous cell carcinoma

    Get PDF
    To prospectively evaluate the prognostic significance of TP53, H-, K-, and N-Ras mutations, DNA-ploidy and S-phase fraction (SPF) in patients affected by locally advanced laryngeal squamous cell carcinoma (LSCC). Eight-one patients (median follow-up was 71 months) who underwent resective surgery for primary operable locally advanced LSCC were analyzed. Tumor DNA was screened for mutational analysis by PCR/SSCP and sequencing. DNA-ploidy and SPF were performed by flow cytometric analyses. Thirty-six patients (44%) had, at least, a mutation in the TP53 gene. Of them, 22% (8/36) had double mutations and 3% (1/36) had triple mutations. In total, 46 TP53 mutations were observed. The majority (41%) of these occur in exon 5 (19/46), while the mutations in exons 6, 7, and 8 were represented in 14, 7, and 6 patients, respectively (31% 15%, and 16%). Five LSCC patients (6%) showed a mutation in H-Ras gene. Sixty-three percent of the cases (51/81) were DNA aneuploidy, 14% of these (7/51) were multiclonal. Thirty-nine patients (48%) had an high SPF value. At Univariate analysis, the DNA aneuploidy, high SPF (> 15.1%), TP53 mutations and, in particular, the mutations that occur in exons 5 and 8 were significantly related to quicker disease relapse and short OS. At Multivariate analysis, the major significant predictors for both disease relapse and death were high SPF and any TP53 mutations. While histological grade G3 was an independent factor only for relapse. In conclusions, any TP53 mutations and high SPF are important biological indicators to predict the outcome of LSCC patients

    Laser Pressure Catapulting (LPC): Optimization LPC-System and Genotyping of Colorectal Carcinomas

    Get PDF
    Genotype analysis is becoming more and more useful in clinical practice, since specific mutations in tumors often correlate with prognosis and/or therapeutic response. Unfortunately, current molecular analytical techniques often require time-consuming and costly steps of analysis, thus making their routine clinical use difficult. Moreover, one of the most difficult problems arising during tumor research is that of their cell heterogeneity, which depends on their clear molecular heterogeneity. SSCP analysis discriminates by means of aberrant electrophoresis migration bands, mutated alleles which may represent as little as 15-20% of their total number. Nevertheless, in order to identify by sequencing the type of alteration revealed by this technique, only the mutated allele must be isolated. The advent of laser microdissection is a procedure which easily solves these problems of accuracy, costs, and time. The aims of this study were to perfect the system of laser pressure catapulting (LPC) laser microdissection for the assessment of the mutational status of p53 and k-ras genes in a consecutive series of 67 patients with colorectal carcinomas (CRC), in order to compare this technique with that involving hand-dissection and to demonstrate that since the LPC system guarantees more accurate biomolecular analyses, it should become part of clinical routine in this field. The LPC-system was perfected with the use of mineral oil and the LPC-membrane. To compare the techniques of hand- and LPC-microdissection, alcohol-fixed, paraffin-embedded tissue from 67 cases of CRC were both hand- and laser-microdissected. In either case, dissected samples were analyzed by SSCP/sequencing and direct sequencing for k-ras and p53 gene mutations. LPC-microdissection made it possible to pick up mutations by direct sequencing or SSCP/sequencing, whereas hand-microdissection mutations were identified only by means of SSCP followed by sequencing; direct sequencing did not reveal any mutation. In the 67 patients examined by either method, 36% (24/67) showed p53 mutations, 32 of which identified. Seventy-eight percent (25/32) were found in the conserved areas of the gene, while 12% (4/32) were in the L2 loop, 50% (16/32) were in the L3 loop, and 12% (4/32) in the LSH motif of the protein. Moreover, of the 67 cases examined, 40% (27/67) showed mutations in k-ras, with a total of 29 mutations identified. Of these, 14 (48%) were found in codon 12 and 15 (52%) in codon 13. The modifications which we brought to the LPC system led to a vast improvement of the technique, making it an ideal substitution for hand-microdissection and guaranteeing a considerable number of advantages regarding facility, accuracy, time, and cost. Furthermore, the data obtained from the mutational analyses performed confirm that the LPC system is more efficient and rapid than hand-microdissection for acquiring useful information regarding molecular profile and can therefore be used with success in clinical routine

    Specific TP53 and/or Ki-ras mutations as independent predictors of clinical outcome in sporadic colorectal adenocarcinomas: results of a 5-year Gruppo Oncologico dell'Italia Meridionale (GOIM) prospective study.

    Get PDF
    BACKGROUND: Although Ki-ras and TP53 mutations have probably been the genetic abnormalities most exhaustively implicated and studied in colorectal cancer (CRC) progression, their significance in terms of disease relapse and overall survival has not yet clearly been established. PATIENTS AND METHODS: A prospective study was carried out on paired tumor and normal colon tissue samples from a consecutive series of 160 previously-untreated patients, undergoing resective surgery for primary operable sporadic CRC. Mutations within the TP53 (exons 5-8) and Ki-ras (exon 2) genes were detected by PCR-SSCP analyses following sequencing. RESULTS: Mutation analyses of exons 5 to 8 of the TP53 gene showed mutations in 43% (68/160) of the cases, while mutation analyses of exon 2 of the Ki-ras gene showed mutations in 46% (74/160) of the cases. Multivariate analyses showed that clinical outcome were strongly associated with the presence of specific TP53 mutations in L3 domain alone (only in DFS) or in combination with specific Ki-ras mutations at codon 13. CONCLUSION: Specific TP53 mutations in L3 domain alone (only in DFS) or in combination with specific Ki-ras mutations at codon 13 are associated with a worse prognosis in sporadic CRC

    BRCA1 genetic testing in 106 breast and ovarian cancer families from southern Italy (Sicily): a mutation analyses.

    Get PDF
    PURPOSE: To evaluate the contribution of germline BRCA1 mutations in the incidence of hereditary and familial Breast Cancer (BC) and/or Ovarian Cancer (OC) in patients from Southern Italy (in the region of Sicily) and to identify a possible association between the higher frequency of BRCA1 mutations and a specific familial profile. EXPERIMENTAL DESIGN: A consecutive series of 650 patients with BC and/or OC diagnosed between 1999 and 2005 were recruited from the Southern Italian region of Sicily, after interview at the "Regional Reference Centre for the Characterization and Genetic Screening of Hereditary Tumors" at the University of Palermo. Genetic counselling allowed us to recruit a total of 106 unrelated families affected with breast and/or ovarian cancer screened for mutations occurring in the whole BRCA1 gene by automatic direct sequencing. RESULTS: Germline BRCA1 mutations were found in 17 of 106 (16%) Sicilian families. The HBOC profile had a major frequency (66%) of mutations (P < 0.01). A total of 28 sequence variants was identified. Seven of these were pathogenic, 5 unknown biological variant (UV) and 16 polymorphisms. We also identified a pathological mutation (4843delC) as a possible Sicilian founder mutation. CONCLUSIONS: The present study is the first BRCA1 disease-associated mutations analysis in Southern Italian families. The early age of onset of such tumors and the association with the HBOC familial profile could be two valid screening factors for the identification of BRCA1 mutation carriers. Finally, we identified a BRCA1 mutation with a possible founder effec

    TP53 and p16INK4A, but not H-KI-Ras, are involved in tumorigenesis and progression of pleomorphic adenomas.

    Get PDF
    The putative role of TP53 and p16INK4A tumor suppressor genes and Ras oncogenes in the development and progression of salivary gland neoplasias was studied in 28 cases of pleomorphic adenomas (PA), 4 cases of cystic adenocarcinomas, and 1 case of carcinoma ex-PA. Genetic and epigenetic alterations in the above genes were analyzed by Polymerase Chain Reaction/Single Strand Conformational Polymorphism (PCR/SSCP) and sequencing and by Methylation Specific-PCR (MS-PCR). Mutations in TP53 were found in 14% (4/28) of PAs and in 60% (3/5) of carcinomas. Mutations in H-Ras and K-Ras were identified in4%(1/28) and7% (2/28) of PAs, respectively. Only 20% (1/5) of carcinomas screened displayed mutations in K-Ras. p16INK4A promoter hypermethylation was found in 14% (4/28) of PAs and 100% (5/5) carcinomas. All genetic and epigenetic alterations were detected exclusively in the epithelial and transitional tumor components, and were absent in the mesenchymal parts. Our analysis suggests that TP53 mutations and p16INK4A promoter methylation, but not alterations in the H-Ras and K-Ras genes, might be involved in the malignant progression of PA into carcinoma. J. Cell. Physiol. 207: 654–659, 2006. 2006 Wiley-Liss, Inc
    • …
    corecore