4,014 research outputs found
Superfast vocal muscles control song production in songbirds
Journal ArticleBirdsong is a widely used model for vocal learning and human speech, which exhibits high temporal and acoustic diversity. Rapid acoustic modulations are thought to arise from the vocal organ, the syrinx, by passive interactions between the two independent sound generators or intrinsic nonlinear dynamics of sound generating structures. Additionally, direct neuromuscular control could produce such rapid and precisely timed acoustic features if syringeal muscles exhibit rare superfast muscle contractile kinetics. However, no direct evidence exists that avian vocal muscles can produce modulations at such high rates
Excess portal venous long-chain fatty acids induce syndrome X via HPA axis and sympathetic activation
We tested the hypothesis that excessive portal venous supply of long-chain fatty acids to the liver contributes to the development of insulin resistance via activation of the hypothalamus-pituitary-adrenal axis (HPA axis) and sympathetic system. Rats received an intraportal infusion of the long-chain fatty acid oleate (150 nmol/min, 24 h), the medium-chain fatty acid caprylate, or the solvent. Corticosterone (Cort) and norepinephrine (NE) were measured as indexes for HPA axis and sympathetic activity, respectively. Insulin sensitivity was assessed by means of an intravenous glucose tolerance test (IVGTT). Oleate infusion induced increases in plasma Cort (Δ = 13.5 ± 3.6 µg/dl; P < 0.05) and NE (Δ = 235 ± 76 ng/l; P < 0.05), whereas caprylate and solvent had no effect. The area under the insulin response curve to the IVGTT was larger in the oleate-treated group than in the caprylate and solvent groups (area = 220 ± 35 vs. 112 ± 13 and 106 ± 8, respectively, P < 0.05). The area under the glucose response curves was comparable [area = 121 ± 13 (oleate) vs. 135 ± 20 (caprylate) and 96 ± 11 (solvent)]. The results are consistent with the concept that increased portal free fatty acid is involved in the induction of visceral obesity-related insulin resistance via activation of the HPA axis and sympathetic system.
Semicircular canals circumvent Brownian Motion overload of mechanoreceptor hair cells
<p>Vertebrate semicircular canals (SCC) first appeared in the vertebrates (i.e. ancestral fish) over 600 million years ago. In SCC the principal mechanoreceptors are hair cells, which as </p><p>compared to cochlear hair cells are distinctly longer (70 vs. 7 μm), 10 times more compliant to bending (44 vs. 500 nN/m), and have a 100-fold higher tip displacement threshold (< 10 μm vs. <400 nm).We have developed biomechanical models of vertebrate hair cells where the </p><p>bundle is approximated as a stiff, cylindrical elastic rod subject to friction and thermal agitation. Our models suggest that the above differences aid SCC hair cells in circumventing the masking effects of Brownian motion noise of about 70 nm, and thereby permit transduction of </p><p>very low frequency (<10 Hz) signals.We observe that very low frequency mechanoreception </p><p>requires increased stimulus amplitude, and argue that this is adaptive to circumvent Brownian motion overload at the hair bundles. We suggest that the selective advantage of detecting such low frequency stimuli may have favoured the evolution of large guiding structures such as semicircular canals and otoliths to overcome Brownian Motion noise at the level of the mechanoreceptors of the SCC.</p
Efficient Large-scale Trace Checking Using MapReduce
The problem of checking a logged event trace against a temporal logic
specification arises in many practical cases. Unfortunately, known algorithms
for an expressive logic like MTL (Metric Temporal Logic) do not scale with
respect to two crucial dimensions: the length of the trace and the size of the
time interval for which logged events must be buffered to check satisfaction of
the specification. The former issue can be addressed by distributed and
parallel trace checking algorithms that can take advantage of modern cloud
computing and programming frameworks like MapReduce. Still, the latter issue
remains open with current state-of-the-art approaches.
In this paper we address this memory scalability issue by proposing a new
semantics for MTL, called lazy semantics. This semantics can evaluate temporal
formulae and boolean combinations of temporal-only formulae at any arbitrary
time instant. We prove that lazy semantics is more expressive than standard
point-based semantics and that it can be used as a basis for a correct
parametric decomposition of any MTL formula into an equivalent one with
smaller, bounded time intervals. We use lazy semantics to extend our previous
distributed trace checking algorithm for MTL. We evaluate the proposed
algorithm in terms of memory scalability and time/memory tradeoffs.Comment: 13 pages, 8 figure
Skeletal Muscle PGC-1β Signaling is Sufficient to Drive an Endurance Exercise Phenotype and to Counteract Components of Detraining in Mice
Peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α and -1β serve as master transcriptional regulators of muscle mitochondrial functional capacity and are capable of enhancing muscle endurance when overexpressed in mice. We sought to determine whether muscle-specific transgenic overexpression of PGC-1β affects the detraining response following endurance training. First, we established and validated a mouse exercise-training-detraining protocol. Second, using multiple physiological and gene expression end points, we found that PGC-1β overexpression in skeletal muscle of sedentary mice fully recapitulated the training response. Lastly, PGC-1β overexpression during the detraining period resulted in partial prevention of the detraining response. Specifically, an increase in the plateau at which O2 uptake (V̇o2) did not change from baseline with increasing treadmill speed [peak V̇o2 (ΔV̇o2max)] was maintained in trained mice with PGC-1β overexpression in muscle 6 wk after cessation of training. However, other detraining responses, including changes in running performance and in situ half relaxation time (a measure of contractility), were not affected by PGC-1β overexpression. We conclude that while activation of muscle PGC-1β is sufficient to drive the complete endurance phenotype in sedentary mice, it only partially prevents the detraining response following exercise training, suggesting that the process of endurance detraining involves mechanisms beyond the reversal of muscle autonomous mechanisms involved in endurance fitness. In addition, the protocol described here should be useful for assessing early-stage proof-of-concept interventions in preclinical models of muscle disuse atrophy
Simultaneous measurement of the maximum oscillation amplitude and the transient decay time constant of the QCM reveals stiffness changes of the adlayer
Interpretation of adsorption kinetics measured with a quartz crystal microbalance (QCM) can be difficult for adlayers undergoing modification of their mechanical properties. We have studied the behavior of the oscillation amplitude, A 0, and the decay time constant, τ, of quartz during adsorption of proteins and cells, by use of a home-made QCM. We are able to measure simultaneously the frequency, f, the dissipation factor, D, the maximum amplitude, A 0, and the transient decay time constant, τ, every 300ms in liquid, gaseous, or vacuum environments. This analysis enables adsorption and modification of liquid/mass properties to be distinguished. Moreover the surface coverage and the stiffness of the adlayer can be estimated. These improvements promise to increase the appeal of QCM methodology for any applications measuring intimate contact of a dynamic material with a solid surfac
Superfast Vocal Muscles Control Song Production in Songbirds
Birdsong is a widely used model for vocal learning and human speech, which exhibits high temporal and acoustic diversity. Rapid acoustic modulations are thought to arise from the vocal organ, the syrinx, by passive interactions between the two independent sound generators or intrinsic nonlinear dynamics of sound generating structures. Additionally, direct neuromuscular control could produce such rapid and precisely timed acoustic features if syringeal muscles exhibit rare superfast muscle contractile kinetics. However, no direct evidence exists that avian vocal muscles can produce modulations at such high rates. Here, we show that 1) syringeal muscles are active in phase with sound modulations during song over 200 Hz, 2) direct stimulation of the muscles in situ produces sound modulations at the frequency observed during singing, and that 3) syringeal muscles produce mechanical work at the required frequencies and up to 250 Hz in vitro. The twitch kinematics of these so-called superfast muscles are the fastest measured in any vertebrate muscle. Superfast vocal muscles enable birds to directly control the generation of many observed rapid acoustic changes and to actuate the millisecond precision of neural activity into precise temporal vocal control. Furthermore, birds now join the list of vertebrate classes in which superfast muscle kinetics evolved independently for acoustic communication
Cognitive rehabilitation for early stage Alzheimer’s disease: a pilot study with an Irish population
Objectives
Research shows that cognitive rehabilitation (CR) has the potential to improve goal performance and enhance well-being for people with early stage Alzheimer’s disease (AD). This single subject, multiple baseline design (MBD) research investigated the clinical efficacy of an 8-week individualised CR intervention for individuals with early stage AD.
Methods
Three participants with early stage AD were recruited to take part in the study. The intervention consisted of eight sessions of 60–90 minutes of CR. Outcomes included goal performance and satisfaction, quality of life, cognitive and everyday functioning, mood, and memory self-efficacy for participants with AD; and carer burden, general mental health, quality of life, and mood of carers.
Results
Visual analysis of MBD data demonstrated a functional relationship between CR and improvements in participants’ goal performance. Subjective ratings of goal performance and satisfaction increased from baseline to post-test for three participants and were maintained at follow-up for two. Baseline to post-test quality of life scores improved for three participants, whereas cognitive function and memory self-efficacy scores improved for two.
Conclusions
Our findings demonstrate that CR can improve goal performance, and is a socially acceptable intervention that can be implemented by practitioners with assistance from carers between sessions. This study represents one of the promising first step towards filling a practice gap in this area. Further research and randomised-controlled trials are required
- …