633 research outputs found

    Exact correlations in a single file system with a driven tracer

    Full text link
    We study the effect of a single driven tracer particle in a bath of other particles performing the random average process on an infinite line using a stochastic hydrodynamics approach. We consider arbitrary fixed as well as random initial conditions and compute the two-point correlations. For quenched uniform and annealed steady state initial conditions we show that in the large time TT limit the fluctuations and the correlations of the positions of the particles grow subdiffusively as T\sqrt{T} and have well defined scaling forms under proper rescaling of the labels. We compute the corresponding scaling functions exactly for these specific initial configurations and verify them numerically. We also consider a non translationally invariant initial condition with linearly increasing gaps where we show that the fluctuations and correlations grow superdiffusively as T3/2T^{3/2} at large times.Comment: 7 pages, 4 figures, supplementary material appended. To appear in EP

    Zone clearance in an infinite TASEP with a step initial condition

    Full text link
    The TASEP is a paradigmatic model of out-of-equilibrium statistical physics, for which many quantities have been computed, either exactly or by approximate methods. In this work we study two new kinds of observables that have some relevance in biological or traffic models. They represent the probability for a given clearance zone of the lattice to be empty (for the first time) at a given time, starting from a step density profile. Exact expressions are obtained for single-time quantities, while more involved history-dependent observables are studied by Monte Carlo simulation, and partially predicted by a phenomenological approach

    Wake-mediated interaction between driven particles crossing a perpendicular flow

    Full text link
    Diagonal or chevron patterns are known to spontaneously emerge at the intersection of two perpendicular flows of self-propelled particles, e.g. pedestrians. The instability responsible for this pattern formation has been studied in previous work in the context of a mean-field approach. Here we investigate the microscopic mechanism yielding to this pattern. We present a lattice model study of the wake created by a particle crossing a perpendicular flow and show how this wake can localize other particles traveling in the same direction as a result of an effective interaction mediated by the perpendicular flow. The use of a semi-deterministic model allows us to characterize analytically the effective interaction between two particles.Comment: 23 pages, 8 figures. To appear in J. Stat. Mec

    Two dimensional outflows for cellular automata with shuffle updates

    Full text link
    In this paper, we explore the two-dimensional behavior of cellular automata with shuffle updates. As a test case, we consider the evacuation of a square room by pedestrians modeled by a cellular automaton model with a static floor field. Shuffle updates are characterized by a variable associated to each particle and called phase, that can be interpreted as the phase in the step cycle in the frame of pedestrian flows. Here we also introduce a dynamics for these phases, in order to modify the properties of the model. We investigate in particular the crossover between low- and high-density regimes that occurs when the density of pedestrians increases, the dependency of the outflow in the strength of the floor field, and the shape of the queue in front of the exit. Eventually we discuss the relevance of these results for pedestrians.Comment: 20 pages, 5 figures. v2: 16 pages, 5 figures; changed the title, abstract and structure of the paper. v3: minor change

    Crossing pedestrian traffic flows,diagonal stripe pattern, and chevron effect

    Full text link
    We study two perpendicular intersecting flows of pedestrians. The latter are represented either by moving hard core particles of two types, eastbound (\symbp) and northbound (\symbm), or by two density fields, \rhop_t(\brr) and \rhom_t(\brr). Each flow takes place on a lattice strip of width MM so that the intersection is an M×MM\times M square. We investigate the spontaneous formation, observed experimentally and in simulations, of a diagonal pattern of stripes in which alternatingly one of the two particle types dominates. By a linear stability analysis of the field equations we show how this pattern formation comes about. We focus on the observation, reported recently, that the striped pattern actually consists of chevrons rather than straight lines. We demonstrate that this `chevron effect' occurs both in particle simulations with various different update schemes and in field simulations. We quantify the effect in terms of the chevron angle Δθ0\Delta\theta_0 and determine its dependency on the parameters governing the boundary conditions.Comment: 36 pages, 22 figure

    Exact domain wall theory for deterministic TASEP with parallel update

    Full text link
    Domain wall theory (DWT) has proved to be a powerful tool for the analysis of one-dimensional transport processes. A simple version of it was found very accurate for the Totally Asymmetric Simple Exclusion Process (TASEP) with random sequential update. However, a general implementation of DWT is still missing in the case of updates with less fluctuations, which are often more relevant for applications. Here we develop an exact DWT for TASEP with parallel update and deterministic (p=1) bulk motion. Remarkably, the dynamics of this system can be described by the motion of a domain wall not only on the coarse-grained level but also exactly on the microscopic scale for arbitrary system size. All properties of this TASEP, time-dependent and stationary, are shown to follow from the solution of a bivariate master equation whose variables are not only the position but also the velocity of the domain wall. In the continuum limit this exactly soluble model then allows us to perform a first principle derivation of a Fokker-Planck equation for the position of the wall. The diffusion constant appearing in this equation differs from the one obtained with the traditional `simple' DWT.Comment: 5 pages, 4 figure

    Continuous and first-order jamming transition in crossing pedestrian traffic flows

    Full text link
    After reviewing the main results obtained within a model for the intersection of two perpendicular flows of pedestrians, we present a new finding: the changeover of the jamming transition from continuous to first order when the size of the intersection area increases.Comment: 14 pages, 9 figure

    Exact gap statistics for the random average process on a ring with a tracer

    Full text link
    We study statistics of the gaps in Random Average Process (RAP) on a ring with particles hopping symmetrically, except one tracer particle which could be driven. These particles hop either to the left or to the right by a random fraction η\eta of the space available till next particle in the respective directions. The random fraction η∈[0, 1)\eta \in [0,~1) is chosen from a distribution R(η)R(\eta). For non-driven tracer, when R(η)R(\eta) satisfies a necessary and sufficient condition, the stationary joint distribution of the gaps between successive particles takes an universal form that is factorized except for a global constraint. Some interesting explicit forms of R(η)R(\eta) are found which satisfy this condition. In case of driven tracer, the system reaches a current-carrying steady state where such factorization does not hold. Analytical progress has been made in the thermodynamic limit, where we computed the single site mass distribution inside the bulk. We have also computed the two point gap-gap correlation exactly in that limit. Numerical simulations support our analytical results.Comment: 19 pages, 6 figure
    • …
    corecore