10,567 research outputs found
Multilinear Time Invariant System Theory
In biological and engineering systems, structure, function and dynamics are
highly coupled. Such interactions can be naturally and compactly captured via
tensor based state space dynamic representations. However, such representations
are not amenable to the standard system and controls framework which requires
the state to be in the form of a vector. In order to address this limitation,
recently a new class of multiway dynamical systems has been introduced in which
the states, inputs and outputs are tensors. We propose a new form of
multilinear time invariant (MLTI) systems based on the Einstein product and
even-order paired tensors. We extend classical linear time invariant (LTI)
system notions including stability, reachability and observability for the new
MLTI system representation by leveraging recent advances in tensor algebra.Comment: 8 pages, SIAM Conference on Control and its Applications 2019,
accepted to appea
Unsupervised Lesion Detection via Image Restoration with a Normative Prior
Unsupervised lesion detection is a challenging problem that requires
accurately estimating normative distributions of healthy anatomy and detecting
lesions as outliers without training examples. Recently, this problem has
received increased attention from the research community following the advances
in unsupervised learning with deep learning. Such advances allow the estimation
of high-dimensional distributions, such as normative distributions, with higher
accuracy than previous methods.The main approach of the recently proposed
methods is to learn a latent-variable model parameterized with networks to
approximate the normative distribution using example images showing healthy
anatomy, perform prior-projection, i.e. reconstruct the image with lesions
using the latent-variable model, and determine lesions based on the differences
between the reconstructed and original images. While being promising, the
prior-projection step often leads to a large number of false positives. In this
work, we approach unsupervised lesion detection as an image restoration problem
and propose a probabilistic model that uses a network-based prior as the
normative distribution and detect lesions pixel-wise using MAP estimation. The
probabilistic model punishes large deviations between restored and original
images, reducing false positives in pixel-wise detections. Experiments with
gliomas and stroke lesions in brain MRI using publicly available datasets show
that the proposed approach outperforms the state-of-the-art unsupervised
methods by a substantial margin, +0.13 (AUC), for both glioma and stroke
detection. Extensive model analysis confirms the effectiveness of MAP-based
image restoration.Comment: Extended version of 'Unsupervised Lesion Detection via Image
Restoration with a Normative Prior' (MIDL2019
Latent Class Model with Application to Speaker Diarization
In this paper, we apply a latent class model (LCM) to the task of speaker
diarization. LCM is similar to Patrick Kenny's variational Bayes (VB) method in
that it uses soft information and avoids premature hard decisions in its
iterations. In contrast to the VB method, which is based on a generative model,
LCM provides a framework allowing both generative and discriminative models.
The discriminative property is realized through the use of i-vector (Ivec),
probabilistic linear discriminative analysis (PLDA), and a support vector
machine (SVM) in this work. Systems denoted as LCM-Ivec-PLDA, LCM-Ivec-SVM, and
LCM-Ivec-Hybrid are introduced. In addition, three further improvements are
applied to enhance its performance. 1) Adding neighbor windows to extract more
speaker information for each short segment. 2) Using a hidden Markov model to
avoid frequent speaker change points. 3) Using an agglomerative hierarchical
cluster to do initialization and present hard and soft priors, in order to
overcome the problem of initial sensitivity. Experiments on the National
Institute of Standards and Technology Rich Transcription 2009 speaker
diarization database, under the condition of a single distant microphone, show
that the diarization error rate (DER) of the proposed methods has substantial
relative improvements compared with mainstream systems. Compared to the VB
method, the relative improvements of LCM-Ivec-PLDA, LCM-Ivec-SVM, and
LCM-Ivec-Hybrid systems are 23.5%, 27.1%, and 43.0%, respectively. Experiments
on our collected database, CALLHOME97, CALLHOME00 and SRE08 short2-summed trial
conditions also show that the proposed LCM-Ivec-Hybrid system has the best
overall performance
- …