3,545 research outputs found

    Entropy inequalities from reflection positivity

    Full text link
    We investigate the question of whether the entropy and the Renyi entropies of the vacuum state reduced to a region of the space can be represented in terms of correlators in quantum field theory. In this case, the positivity relations for the correlators are mapped into inequalities for the entropies. We write them using a real time version of reflection positivity, which can be generalized to general quantum systems. Using this generalization we can prove an infinite sequence of inequalities which are obeyed by the Renyi entropies of integer index. There is one independent inequality involving any number of different subsystems. In quantum field theory the inequalities acquire a simple geometrical form and are consistent with the integer index Renyi entropies being given by vacuum expectation values of twisting operators in the Euclidean formulation. Several possible generalizations and specific examples are analyzed.Comment: Significantly enlarged and corrected version. Counterexamples found for the most general form of the inequalities. V3: minor change

    Removal of Spectro-Polarimetric Fringes by 2D Pattern Recognition

    Full text link
    We present a pattern-recognition based approach to the problem of removal of polarized fringes from spectro-polarimetric data. We demonstrate that 2D Principal Component Analysis can be trained on a given spectro-polarimetric map in order to identify and isolate fringe structures from the spectra. This allows us in principle to reconstruct the data without the fringe component, providing an effective and clean solution to the problem. The results presented in this paper point in the direction of revising the way that science and calibration data should be planned for a typical spectro-polarimetric observing run.Comment: ApJ, in pres

    Multi-line Stokes inversion for prominence magnetic-field diagnostics

    Full text link
    We present test results on the simultaneous inversion of the Stokes profiles of the He I lines at 587.6 nm (D_3) and 1083.0 nm in prominences (90-deg scattering). We created datasets of synthetic Stokes profiles for the case of quiescent prominences (B<200 G), assuming a conservative value of 10^-3 of the peak intensity for the polarimetric sensitivity of the simulated observations. In this work, we focus on the error analysis for the inference of the magnetic field vector, under the usual assumption that the prominence can be assimilated to a slab of finite optical thickness with uniform magnetic and thermodynamic properties. We find that the simultaneous inversion of the two lines significantly reduces the errors on the inference of the magnetic field vector, with respect to the case of single-line inversion. These results provide a solid justification for current and future instrumental efforts with multi-line capabilities for the observations of solar prominences and filaments.Comment: 14 pages, 5 figures, 1 tabl

    Mutual information challenges entropy bounds

    Full text link
    We consider some formulations of the entropy bounds at the semiclassical level. The entropy S(V) localized in a region V is divergent in quantum field theory (QFT). Instead of it we focus on the mutual information I(V,W)=S(V)+S(W)-S(V\cup W) between two different non-intersecting sets V and W. This is a low energy quantity, independent of the regularization scheme. In addition, the mutual information is bounded above by twice the entropy corresponding to the sets involved. Calculations of I(V,W) in QFT show that the entropy in empty space cannot be renormalized to zero, and must be actually very large. We find that this entropy due to the vacuum fluctuations violates the FMW bound in Minkowski space. The mutual information also gives a precise, cutoff independent meaning to the statement that the number of degrees of freedom increases with the volume in QFT. If the holographic bound holds, this points to the essential non locality of the physical cutoff. Violations of the Bousso bound would require conformal theories and large distances. We speculate that the presence of a small cosmological constant might prevent such a violation.Comment: 10 pages, 2 figures, minor change

    Entanglement and alpha entropies for a massive scalar field in two dimensions

    Full text link
    We find the analytic expression of the trace of powers of the reduced density matrix on an interval of length L, for a massive boson field in 1+1 dimensions. This is given exactly (except for a non universal factor) in terms of a finite sum of solutions of non linear differential equations of the Painlev\'e V type. Our method is a generalization of one introduced by Myers and is based on the explicit calculation of quantities related to the Green function on a plane, where boundary conditions are imposed on a finite cut. It is shown that the associated partition function is related to correlators of exponential operators in the Sine-Gordon model in agreement with a result by Delfino et al. We also compute the short and long distance leading terms of the entanglement entropy. We find that the bosonic entropic c-function interpolates between the Dirac and Majorana fermion ones given in a previous paper. Finally, we study some universal terms for the entanglement entropy in arbitrary dimensions which, in the case of free fields, can be expressed in terms of the two dimensional entropy functions.Comment: 13 pages, 2 figure

    Space and Time pattern of mid-velocity IMF emission in peripheral heavy-ion collisions at Fermi energies

    Full text link
    The emission pattern in the V_perp - V_par plane of Intermediate Mass Fragments with Z=3-7 (IMF) has been studied in the collision 116Sn + 93Nb at 29.5 AMeV as a function of the Total Kinetic Energy Loss of the reaction. This pattern shows that for peripheral reactions most of IMF's are emitted at mid-velocity. Coulomb trajectory calculations demonstrate that these IMF's are produced in the early stages of the reaction and shed light on geometrical details of these emissions, suggesting that the IMF's originate both from the neck and the surface of the interacting nuclei.Comment: 4 pages, 3 figures, RevTex 3.1, submitted to Phys. Rev. Letter

    Analytic results on the geometric entropy for free fields

    Full text link
    The trace of integer powers of the local density matrix corresponding to the vacuum state reduced to a region V can be formally expressed in terms of a functional integral on a manifold with conical singularities. Recently, some progress has been made in explicitly evaluating this type of integrals for free fields. However, finding the associated geometric entropy remained in general a difficult task involving an analytic continuation in the conical angle. In this paper, we obtain this analytic continuation explicitly exploiting a relation between the functional integral formulas and the Chung-Peschel expressions for the density matrix in terms of correlators. The result is that the entropy is given in terms of a functional integral in flat Euclidean space with a cut on V where a specific boundary condition is imposed. As an example we get the exact entanglement entropies for massive scalar and Dirac free fields in 1+1 dimensions in terms of the solutions of a non linear differential equation of the Painleve V type.Comment: 7 pages, minor change

    Bi-partite entanglement entropy in massive (1+1)-dimensional quantum field theories

    Get PDF
    This paper is a review of the main results obtained in a series of papers involving the present authors and their collaborator J L Cardy over the last 2 years. In our work, we have developed and applied a new approach for the computation of the bi-partite entanglement entropy in massive (1+1)-dimensional quantum field theories. In most of our work we have also considered these theories to be integrable. Our approach combines two main ingredients: the 'replica trick' and form factors for integrable models and more generally for massive quantum field theory. Our basic idea for combining fruitfully these two ingredients is that of the branch-point twist field. By the replica trick, we obtained an alternative way of expressing the entanglement entropy as a function of the correlation functions of branch-point twist fields. On the other hand, a generalization of the form factor program has allowed us to study, and in integrable cases to obtain exact expressions for, form factors of such twist fields. By the usual decomposition of correlation functions in an infinite series involving form factors, we obtained exact results for the infrared behaviours of the bi-partite entanglement entropy, and studied both its infrared and ultraviolet behaviours for different kinds of models: with and without boundaries and backscattering, at and out of integrability
    corecore