75 research outputs found

    Optimal Routing for Quantum Networks

    Get PDF
    To fully unleash the potentials of quantum computing, several new challenges and open problems need to be addressed. From a routing perspective, the optimal routing problem, i.e., the problem of jointly designing a routing protocol and a route metric assuring the discovery of the route providing the highest quantum communication opportunities between an arbitrary couple of quantum devices, is crucial. In this paper, the optimal routing problem is addressed for generic quantum network architectures composed by repeaters operating through single atoms in optical cavities. Specifically, we first model the entanglement generation through a stochastic framework that allows us to jointly account for the key physical-mechanisms affecting the end-to-end entanglement rate, such as decoherence time, atom-photon and photon-photon entanglement generation, entanglement swapping, and imperfect Bell-state measurement. Then, we derive the closed-form expression of the end-to-end entanglement rate for an arbitrary path and we design an efficient algorithm for entanglement rate computation. Finally, we design a routing protocol and we prove its optimality when used in conjunction with the entanglement rate as routing metric

    Towards a Distributed Quantum Computing Ecosystem

    Full text link
    The Quantum Internet, by enabling quantum communications among remote quantum nodes, is a network capable of supporting functionalities with no direct counterpart in the classical world. Indeed, with the network and communications functionalities provided by the Quantum Internet, remote quantum devices can communicate and cooperate for solving challenging computational tasks by adopting a distributed computing approach. The aim of this paper is to provide the reader with an overview about the main challenges and open problems arising with the design of a Distributed Quantum Computing ecosystem. For this, we provide a survey, following a bottom-up approach, from a communications engineering perspective. We start by introducing the Quantum Internet as the fundamental underlying infrastructure of the Distributed Quantum Computing ecosystem. Then we go further, by elaborating on a high-level system abstraction of the Distributed Quantum Computing ecosystem. Such an abstraction is described through a set of logical layers. Thereby, we clarify dependencies among the aforementioned layers and, at the same time, a road-map emerges

    Quantum Internet: from Communication to Distributed Computing!

    Full text link
    In this invited paper, the authors discuss the exponential computing speed-up achievable by interconnecting quantum computers through a quantum internet. They also identify key future research challenges and open problems for quantum internet design and deployment.Comment: 4 pages, three figures, invited pape

    Capacity Bounds for Quantum Communications through Quantum Trajectories

    Full text link
    In both classical and quantum Shannon's information theory, communication channels are generally assumed to combine through classical trajectories, so that the associated network path traversed by the information carrier is well-defined. Counter-intuitively, quantum mechanics enables a quantum information carrier to propagate through a quantum trajectory, i.e., through a path such that the causal order of the constituting communications channels becomes indefinite. Quantum trajectories exhibit astonishing features, such as providing non-null capacity even when no information can be sent through any classical trajectory. But the fundamental question of investigating the ultimate rates achievable with quantum trajectories is an open and crucial problem. To this aim, in this paper, we derive closed-form expressions for both the upper- and the lower-bound on the quantum capacity achievable via a quantum trajectory. The derived expressions depend, remarkably, on computable single-letter quantities. Our findings reveal the substantial advantage achievable with a quantum trajectory over any classical combination of the communications channels in terms of ultimate achievable communication rates. Furthermore, we identify the region where a quantum trajectory incontrovertibly outperforms the amount of transmissible information beyond the limits of conventional quantum Shannon theory, and we quantify this advantage over classical trajectories through a conservative estimate

    Quantum Switch for the Quantum Internet: Noiseless Communications through Noisy Channels

    Full text link
    Counter-intuitively, quantum mechanics enables quantum particles to propagate simultaneously among multiple space-time trajectories. Hence, a quantum information carrier can travel through different communication channels in a quantum superposition of different orders, so that the relative time-order of the communication channels becomes indefinite. This is realized by utilizing a quantum device known as quantum switch. In this paper, we investigate, from a communication-engineering perspective, the use of the quantum switch within the quantum teleportation process, one of the key functionalities of the Quantum Internet. Specifically, a theoretical analysis is conducted to quantify the performance gain that can be achieved by employing a quantum switch for the entanglement distribution process within the quantum teleportation with respect to the case of absence of quantum switch. This analysis reveals that, by utilizing the quantum switch, the quantum teleportation is heralded as a noiseless communication process with a probability that, remarkably and counter-intuitively, increases with the noise levels affecting the communication channels considered in the indefinite-order time combination.Comment: 14 pages, double colum

    Augmented Tree-based Routing Protocol for Scalable Ad Hoc Networks

    Full text link
    In ad hoc networks scalability is a critical requirement if these technologies have to reach their full potential. Most of the proposed routing protocols do not operate efficiently with networks of more than a few hundred nodes. In this paper, we propose an augmented tree-based address space structure and a hierarchical multi-path routing protocol, referred to as Augmented Tree-based Routing (ATR), which utilizes such a structure in order to solve the scalability problem and to gain good resilience against node failure/mobility and link congestion/instability. Simulation results and performance comparisons with existing protocols substantiate the effectiveness of the ATR.Comment: Routing, mobile ad hoc network, MANET, dynamic addressing, multi-path, distributed hash table, DH

    On Reliability of Dynamic Addressing Routing Protocols in Mobile Ad Hoc Networks

    Full text link
    In this paper, a reliability analysis is carried out to state a performance comparison between two recently proposed proactive routing algorithms. These protocols are able to scale in ad hoc and sensor networks by resorting to dynamic addressing, to face with the topology variability, which is typical of ad hoc, and sensor networks. Numerical simulations are also carried out to corroborate the results of the analysis.Comment: Proc. of WRECOM '07: Wireless Rural and Emergency Communications Conference, Roma (Italy), October 200

    A Reliability-based Framework for Multi-path Routing Analysis in Mobile Ad-Hoc Networks

    Full text link
    Unlike traditional routing procedures that, at the best, single out a unique route, multi-path routing protocols discover proactively several alternative routes. It has been recognized that multi-path routing can be more efficient than traditional one mainly for mobile ad hoc networks, where route failure events are frequent. Most studies in the area of multi-path routing focus on heuristic methods, and the performances of these strategies are commonly evaluated by numerical simulations. The need of a theoretical analysis motivates such a paper, which proposes to resort to the terminal-pair routing reliability as performance metric. This metric allows one to assess the performance gain due to the availability of route diversity. By resorting to graph theory, we propose an analytical framework to evaluate the tolerance of multi-path route discovery processes against route failures for mobile ad hoc networks. Moreover, we derive a useful bound to easily estimate the performance improvements achieved by multi-path routing with respect to any traditional routing protocol. Finally, numerical simulation results show the effectiveness of this performance analysis.Comment: To appear on IJCNDS: International Journal of Communication Networks and Distributed System

    Speeding up Future Video Distribution via Channel-Aware Caching-Aided Coded Multicast

    Full text link
    Future Internet usage will be dominated by the consumption of a rich variety of online multimedia services accessed from an exponentially growing number of multimedia capable mobile devices. As such, future Internet designs will be challenged to provide solutions that can deliver bandwidth-intensive, delay-sensitive, on-demand video-based services over increasingly crowded, bandwidth-limited wireless access networks. One of the main reasons for the bandwidth stress facing wireless network operators is the difficulty to exploit the multicast nature of the wireless medium when wireless users or access points rarely experience the same channel conditions or access the same content at the same time. In this paper, we present and analyze a novel wireless video delivery paradigm based on the combined use of channel-aware caching and coded multicasting that allows simultaneously serving multiple cache-enabled receivers that may be requesting different content and experiencing different channel conditions. To this end, we reformulate the caching-aided coded multicast problem as a joint source-channel coding problem and design an achievable scheme that preserves the cache-enabled multiplicative throughput gains of the error-free scenario,by guaranteeing per-receiver rates unaffected by the presence of receivers with worse channel conditions.Comment: 11 pages,6 figures,to appear in IEEE JSAC Special Issue on Video Distribution over Future Interne
    • …
    corecore