9 research outputs found

    The beta function of N=1 SYM in Differential Renormalization

    Get PDF
    Using differential renormalization, we calculate the complete two-point function of the background gauge superfield in pure N=1 Supersymmetric Yang-Mills theory to two loops. Ultraviolet and (off-shell) infrared divergences are renormalized in position and momentum space respectively. This allows us to reobtain the beta function from the dependence on the ultraviolet renormalization scale in an infrared-safe way. The two-loop coefficient of the beta function is generated by the one-loop ultraviolet renormalization of the quantum gauge field via nonlocal terms which are infrared divergent on shell. We also discuss the connection of the beta function to the flow of the Wilsonian coupling.Comment: 20 pages, 2 figures. Reference added, minor correction

    On Penrose Limits and Gauge Theories

    Full text link
    We discuss various Penrose limits of conformal and nonconformal backgrounds. In AdS_5 x T^{1,1}, for a particular choice of the angular coordinate in T^{1,1} the resulting Penrose limit coincides with the similar limit for AdS_5 x S^5. In this case an identification of a subset of field theory operators with the string zero modes creation operators is possible. For another limit we obtain a light-cone string action that resembles a particle in a magnetic field. We also consider three different types of backgrounds that are dual to nonconformal field theories: The Schwarzschild black hole in AdS_5, D3-branes on the small resolution of the conifold and the Klebanov-Tseytlin background. We find that in all three cases the introduction of nonconformality renders a theory that is no longer exactly solvable and that the form of the deformation is universal. The corresponding world sheet theory in the light-cone gauge has a \tau=x^+ dependent mass term.Comment: 17pp, late

    Duality cascades and duality walls

    Full text link
    We recast the phenomenon of duality cascades in terms of the Cartan matrix associated to the quiver gauge theories appearing in the cascade. In this language, Seiberg dualities for the different gauge factors correspond to Weyl reflections. We argue that the UV behavior of different duality cascades depends markedly on whether the Cartan matrix is affine ADE or not. In particular, we find examples of duality cascades that can't be continued after a finite energy scale, reaching a "duality wall", in terminology due to M. Strassler. For these duality cascades, we suggest the existence of a UV completion in terms of a little string theory.Comment: harvmac, 24 pages, 4 figures. v2: references added. v3: reference adde

    Bouncing Brane Cosmologies from Warped String Compactifications

    Full text link
    We study the cosmology induced on a brane probing a warped throat region in a Calabi-Yau compactification of type IIB string theory. For the case of a BPS D3-brane probing the Klebanov-Strassler warped deformed conifold, the cosmology described by a suitable brane observer is a bouncing, spatially flat Friedmann-Robertson-Walker universe with time-varying Newton's constant, which passes smoothly from a contracting to an expanding phase. In the Klebanov-Tseytlin approximation to the Klebanov-Strassler solution the cosmology would end with a big crunch singularity. In this sense, the warped deformed conifold provides a string theory resolution of a spacelike singularity in the brane cosmology. The four-dimensional effective action appropriate for a brane observer is a simple scalar-tensor theory of gravity. In this description of the physics, a bounce is possible because the relevant energy-momentum tensor can classically violate the null energy condition.Comment: 20 pages, 2 figures; v2, references added and minor correction

    Notes on Non-Critical Superstrings in Various Dimensions

    Full text link
    We study non-critical superstrings propagating in d≤6d \le 6 dimensional Minkowski space or equivalently, superstrings propagating on the two-dimensional Euclidean black hole tensored with d-dimensional Minkowski space. We point out a subtlety in the construction of supersymmetric theories in these backgrounds, and explain how this does not allow a consistent geometric interpretation in terms of fields propagating on a cigar-like spacetime. We explain the global symmetries of the various theories by using their description as the near horizon geometry of wrapped NS5-brane configurations. In the six-dimensional theory, we present a CFT description of the four-dimensional moduli space and the global O(3) symmetry. The worldsheet action invariant under this symmetry contains both the N=2 sine-Liouville interaction and the cigar metric, thereby providing an example where the two interactions are naturally present in the same worldsheet lagrangian already at the non-dynamical level.Comment: 33 pages, harvma

    The Giant Inflaton

    Full text link
    We investigate a new mechanism for realizing slow roll inflation in string theory, based on the dynamics of p anti-D3 branes in a class of mildly warped flux compactifications. Attracted to the bottom of a warped conifold throat, the anti-branes then cluster due to a novel mechanism wherein the background flux polarizes in an attempt to screen them. Once they are sufficiently close, the M units of flux cause the anti-branes to expand into a fuzzy NS5-brane, which for rather generic choices of p/M will unwrap around the geometry, decaying into D3-branes via a classical process. We find that the effective potential governing this evolution possesses several epochs that can potentially support slow-roll inflation, provided the process can be arranged to take place at a high enough energy scale, of about one or two orders of magnitude below the Planck energy; this scale, however, lies just outside the bounds of our approximations.Comment: 31 pages, 4 figures, LaTeX. v2: references added, typos fixe

    A Soluble String Theory of Hadrons

    Get PDF
    We consider Penrose limits of the Klebanov-Strassler and Maldacena-Nunez holographic duals to N =1 supersymmetric Yang-Mills. By focusing in on the IR region we obtain exactly solvable string theory models. These represent the nonrelativistic motion and low-lying excitations of heavy hadrons with mass proportional to a large global charge. We argue that these hadrons, both physically and mathematically, take the form of heavy nonrelativistic strings; we term them "annulons." A simple toy model of a string boosted along a compact circle allows us considerable insight into their properties. We also calculate the Wilson loop carrying large global charge and show the effect of confinement is quadratic, not linear, in the string tension.Comment: 40 pages, 1 figure; v2: typos correcte

    Cosmic F- and D-strings

    Full text link
    Macroscopic fundamental and Dirichlet strings have several potential instabilities: breakage, tachyon decays, and confinement by axion domain walls. We investigate the conditions under which metastable strings can exist, and we find that such strings are present in many models. There are various possibilities, the most notable being a network of (p,q) strings. Cosmic strings give a potentially large window into string physics.Comment: 27 pages, 5 figures; v. 5: JHEP style, added comments in section 2.
    corecore