75 research outputs found
Association of Prenatal Maternal Depression and Anxiety Symptoms with Infant White Matter Microstructure
Importance: Maternal depression and anxiety can have deleterious and lifelong consequences on child development. However, many aspects of the association of early brain development with maternal symptoms remain unclear. Understanding the timing of potential neurobiological alterations holds inherent value for the development and evaluation of future therapies and interventions. Objective: To examine the association between exposure to prenatal maternal depression and anxiety symptoms and offspring white matter microstructure at 1 month of age. Design, Setting, and Participants: This cohort study of 101 mother-infant dyads used a composite of depression and anxiety symptoms measured in mothers during the third trimester of pregnancy and measures of white matter microstructure characterized in the mothers' 1-month offspring using diffusion tensor imaging and neurite orientation dispersion and density imaging performed from October 1, 2014, to November 30, 2016. Magnetic resonance imaging was performed at an academic research facility during natural, nonsedated sleep. Main Outcomes and Measures: Brain mapping algorithms and statistical models were used to evaluate the association between maternal depression and anxiety and 1-month infant white matter microstructure as measured by diffusion tensor imaging and neurite orientation dispersion and density imaging findings. Results: In the 101 mother-infant dyads (mean [SD] age of mothers, 33.22 [3.99] years; mean age of infants at magnetic resonance imaging, 33.07 days [range, 18-50 days]; 92 white mothers [91.1%]; 53 male infants [52.5%]), lower 1-month white matter microstructure (decreased neurite density and increased mean, radial, and axial diffusivity) was associated in right frontal white matter microstructure with higher prenatal maternal symptoms of depression and anxiety. Significant sex × symptom interactions with measures of white matter microstructure were also observed, suggesting that white matter development may be differentially sensitive to maternal depression and anxiety symptoms in males and females during the prenatal period. Conclusions and Relevance: These data highlight the importance of the prenatal period to early brain development and suggest that the underlying white matter microstructure is associated with the continuum of prenatal maternal depression and anxiety symptoms
Renal (Uremic) Encephalopathy in a Goat
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72407/1/j.1439-0442.2005.00752.x.pd
Genome-wide association study identifies 30 Loci Associated with Bipolar Disorder
This paper is dedicated to the memory of Psychiatric Genomics Consortium (PGC) founding member and Bipolar disorder working group co-chair Pamela Sklar. We thank the participants who donated their time, experiences and DNA to this research, and to the clinical and scientific teams that worked with them. We are deeply indebted to the investigators who comprise the PGC. The views expressed are those of the authors and not necessarily those of any funding or regulatory body. Analyses were carried out on the NL Genetic Cluster Computer (http://www.geneticcluster.org ) hosted by SURFsara, and the Mount Sinai high performance computing cluster (http://hpc.mssm.edu).Bipolar disorder is a highly heritable psychiatric disorder. We performed a genome-wide association study including 20,352 cases and 31,358 controls of European descent, with follow-up analysis of 822 variants with P<1x10-4 in an additional 9,412 cases and 137,760 controls. Eight of the 19 variants that were genome-wide significant (GWS, p < 5x10-8) in the discovery GWAS were not GWS in the combined analysis, consistent with small effect sizes and limited power but also with genetic heterogeneity. In the combined analysis 30 loci were GWS including 20 novel loci. The significant loci contain genes encoding ion channels, neurotransmitter transporters and synaptic components. Pathway analysis revealed nine significantly enriched gene-sets including regulation of insulin secretion and endocannabinoid signaling. BDI is strongly genetically correlated with schizophrenia, driven by psychosis, whereas BDII is more strongly correlated with major depressive disorder. These findings address key clinical questions and provide potential new biological mechanisms for BD.This work was funded in part by the Brain and Behavior Research Foundation, Stanley Medical Research Institute, University of Michigan, Pritzker Neuropsychiatric Disorders Research Fund L.L.C., Marriot Foundation and the Mayo Clinic Center for Individualized Medicine, the NIMH Intramural Research Program; Canadian Institutes of Health Research; the UK Maudsley NHS Foundation Trust, NIHR, NRS, MRC, Wellcome Trust; European Research Council; German Ministry for Education and Research, German Research Foundation IZKF of Münster, Deutsche Forschungsgemeinschaft, ImmunoSensation, the Dr. Lisa-Oehler Foundation, University of Bonn; the Swiss National Science Foundation; French Foundation FondaMental and ANR; Spanish Ministerio de Economía, CIBERSAM, Industria y Competitividad, European Regional Development Fund (ERDF), Generalitat de Catalunya, EU Horizon 2020 Research and Innovation Programme; BBMRI-NL; South-East Norway Regional Health Authority and Mrs. Throne-Holst; Swedish Research Council, Stockholm County Council, Söderström Foundation; Lundbeck Foundation, Aarhus University; Australia NHMRC, NSW Ministry of Health, Janette M O'Neil and Betty C Lynch
Regulation of intracellular free arachidonic acid in Aplysia nervous system
We have studied the regulation of arachidonic acid (AA) uptake, metabolism, and release in Aplysia nervous system. Following uptake of [ 3 H]AA, the distribution of radioactivity in intracellular and extracellular lipid pools was measured as a function of time in the presence or absence of exogenous AA. The greatest amount of AA was esterified into phosphatidylinositol (relative to pool size). We found that the intracellular free AA pool underwent rapid turnover, and that radioactive free AA and eicosanoids were released at a rapid rate into the extracellular medium, both in the presence and absence of exogenous AA. Most of the released radioactivity originated from phosphatidylinositol.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/48020/1/232_2005_Article_BF01868464.pd
Neurosteroidogenesis Today: Novel Targets for Neuroactive Steroid Synthesis and Action and Their Relevance for Translational Research
Neuroactive steroids are endogenous neuromodulators synthesised in the brain that rapidly alter neuronal excitability by binding to membrane receptors, in addition to the regulation of gene expression via intracellular steroid receptors. Neuroactive steroids induce potent anxiolytic, antidepressant, anticonvulsant, sedative, analgesic and amnesic effects, mainly through interaction with the GABAA receptor. They also exert neuroprotective, neurotrophic and antiapoptotic effects in several animal models of neurodegenerative diseases. Neuroactive steroids regulate many physiological functions, such as the stress response, puberty, the ovarian cycle, pregnancy and reward. Their levels are altered in several neuropsychiatric and neurological diseases and both preclinical and clinical studies emphasise a therapeutic potential of neuroactive steroids for these diseases, whereby symptomatology ameliorates upon restoration of neuroactive steroid concentrations. However, direct administration of neuroactive steroids has several challenges, including pharmacokinetics, low bioavailability, addiction potential, safety and tolerability, which limit its therapeutic use. Therefore, modulation of neurosteroidogenesis to restore the altered endogenous neuroactive steroid tone may represent a better therapeutic approach. This review summarises recent approaches that target the neuroactive steroid biosynthetic pathway at different levels aiming to promote neurosteroidogenesis. These include modulation of neurosteroidogenesis through ligands of the translocator protein 18 kDa and the pregnane xenobiotic receptor, as well as targeting of specific neurosteroidogenic enzymes such as 17\u3b2-hydroxysteroid dehydrogenase type 10 or P450 side chain cleavage. Enhanced neurosteroidogenesis through these targets may be beneficial not only for neurodegenerative diseases, such as Alzheimer's disease and age-related dementia, but also for neuropsychiatric diseases, including alcohol use disorders
- …