22,467 research outputs found
Bends In Nanotubes Allow Electric Spin Control and Coupling
We investigate combined effects of spin-orbit coupling and magnetic field in
carbon nanotubes containing one or more bends along their length. We show how
bends can be used to provide electrical control of confined spins, while spins
confined in straight segments remain insensitive to electric fields. Device
geometries that allow general rotation of single spins are presented and
analyzed. In addition, capacitive coupling along bends provides coherent
spin-spin interaction, including between otherwise disconnected nanotubes,
completing a universal set of one- and two-qubit gates.Comment: 6 pages, 5 figure
Cluster algebras in scattering amplitudes with special 2D kinematics
We study the cluster algebra of the kinematic configuration space
of a n-particle scattering amplitude restricted to the
special 2D kinematics. We found that the n-points two loop MHV remainder
function found in special 2D kinematics depend on a selection of
\XX-coordinates that are part of a special structure of the cluster algebra
related to snake triangulations of polygons. This structure forms a necklace of
hypercubes beads in the corresponding Stasheff polytope. Furthermore in , the cluster algebra and the selection of \XX-coordinates in special 2D
kinematics replicates the cluster algebra and the selection of \XX-coordinates
of two loop MHV amplitude in 4D kinematics.Comment: 22 page
Coulomb-Modified Fano Resonance in a One-Lead Quantum Dot
We investigate a tunable Fano interferometer consisting of a quantum dot
coupled via tunneling to a one-dimensional channel. In addition to Fano
resonance, the channel shows strong Coulomb response to the dot, with a single
electron modulating channel conductance by factors of up to 100. Where these
effects coexist, lineshapes with up to four extrema are found. A model of
Coulomb-modified Fano resonance is developed and gives excellent agreement with
experiment.Comment: related papers available at http://marcuslab.harvard.ed
Cotunneling Spectroscopy in Few-Electron Quantum Dots
Few-electron quantum dots are investigated in the regime of strong tunneling
to the leads. Inelastic cotunneling is used to measure the two-electron
singlet-triplet splitting above and below a magnetic field driven
singlet-triplet transition. Evidence for a non-equilibrium two-electron
singlet-triplet Kondo effect is presented. Cotunneling allows orbital
correlations and parameters characterizing entanglement of the two-electron
singlet ground state to be extracted from dc transport.Comment: related papers available at http://marcuslab.harvard.ed
Fast Single-Charge Sensing with an rf Quantum Point Contact
We report high-bandwidth charge sensing measurements using a GaAs quantum
point contact embedded in a radio frequency impedance matching circuit
(rf-QPC). With the rf-QPC biased near pinch-off where it is most sensitive to
charge, we demonstrate a conductance sensitivity of 5x10^(-6) e^(2)/h Hz^(-1/2)
with a bandwidth of 8 MHz. Single-shot readout of a proximal few-electron
double quantum dot is investigated in a mode where the rf-QPC back-action is
rapidly switched.Comment: related papers available at http://marcuslab.harvard.ed
- …