633 research outputs found

    Development of high-temperature ferromagnetism in SnO2 and paramagnetism in SnO by Fe doping

    Get PDF
    We report the development of room-temperature ferromagnetism in chemically synthesized powder samples of Sn1−xFexO2 (0.005≤ x ≤0.05) and paramagnetic behavior in an identically synthesized set of Sn1−xFexO. The ferromagnetic Sn0.99Fe0.01O2 showed a Curie temperature TC=850 K, which is among the highest reported for transition-metal-doped semiconductor oxides. With increasing Fe doping, the lattice parameters of SnO2 decreased and the saturation magnetization increased, suggesting a strong structure-magnetic property relationship. When the Sn0.95Fe0.05O2 was prepared at different temperatures between 200 and 900 °C, systematic changes in the magnetic properties were observed. Combined Mössbauer spectroscopy and magnetometry measurements showed a ferromagnetic behavior in Sn0.95Fe0.05O2 samples prepared at and above 350°C, but the ferromagnetic component decreased gradually as preparation temperature approached 600 °C. All Sn0.95Fe0.05O2 samples prepared above 600 °C were paramagnetic. X-ray photoelectron spectroscopy, magnetometry, and particle induced x-ray emission studies showed that the Fe dopants diffuse towards the surface of the particles in samples prepared at higher temperatures, gradually destroying the ferromagnetism. Mössbauer studies showed that the magnetically ordered Fe3+ spins observed in the Sn0.95Fe0.05O2 sample prepared at 350 °C is only ~24% of the uniformly incorporated Fe3+. No evidence of any iron oxide impurity phases were detected in Sn1−xFexO2 or Sn1−xFexO, suggesting that the emerging magnetic interactions in these systems are most likely related to the properties of the host systems SnO2 and SnO, and their oxygen stoichiometry

    63Cu NQR evidence of dimensional crossover to anisotropic 2d regime in S= 1/2 three-leg ladder Sr2Cu3O5

    Full text link
    We probed spin-spin correlations up to 725 K with 63Cu NQR in the S= 1/2 three-leg ladder Sr2Cu3O5. We present experimental evidence that below 300 K, weak inter-ladder coupling causes dimensional crossover of the spin-spin correlation length \xi from quasi-1d (\xi ~ 1/T) to anisotropic 2d regime (\xi \~ exp[2\pi\rho_{s}/T], where 2\pi\rho_{s} = 290 +/- 30 K is the effective spin stiffness). This is the first experimental verification of the renormalized classical behavior of the anisotropic non-linear sigma model in 2d, which has been recently proposed for the striped phase in high T_{c} cuprates.Comment: 4 pages, 3 figure

    Evidence for Ballistic Thermal Conduction in the One-Dimensional S=1/2 Heisenberg Antiferromagnetic Spin System Sr2CuO3

    Full text link
    We have measured the thermal conductivity of the one-dimensional (1D) S=1/2 Heisenberg antiferromagnetic spin system of Sr2Cu1-xPdxO3 single crystals including nonmagnetic impurities of Pd2+. It has been found that the mean free path of spinons along the 1D spin chain at low temperatures is very close to the average length of finite spin chains between spin defects estimated from the magnetic susceptibility measurements. This proves that the thermal conduction due to spinons at low temperatures in Sr2CuO3 is ballistic as theoretically expected [Zotos et al.: Phys. Rev. Lett. 55 (1997) 11029]

    Diffusive energy transport in the S=1 Haldane chain compound AgVP2S6

    Full text link
    We present the results of measurements of the thermal conductivity κ\kappa of the spin S=1 chain compound AgVP_2S_6 in the temperature range between 2 and 300 K and with the heat flow directed either along or perpendicular to the chain direction. The analysis of the anisotropy of the heat transport allowed for the identification of a small but non-negligible magnon contribution κm\kappa_m along the chains, superimposed on the dominant phonon contribution κph\kappa_ph. At temperatures above about 100 K the energy diffusion constant D_E(T), calculated from the κm(T)\kappa_m(T) data, exhibits similar features as the spin diffusion constant D_S(T), previously measured by NMR. In this regime, the behaviour of both transport parameters is consistent with a diffusion process that is caused by interactions inherent to one-dimensional S=1 spin systems.Comment: 6 pages, 4 figure

    Conductivity of quantum-spin chains: A Quantum Monte Carlo approach

    Full text link
    We discuss zero-frequency transport properties of various spin-1/2 chains. We show, that a careful analysis of Quantum Monte-Carlo (QMC) data on the imaginary axis allows to distinguish between intrinsic ballistic and diffusive transport. We determine the Drude weight, current-relaxation life-time and the mean-free path for integrable and a non-integrable quantum-spin chain. We discuss, in addition, some phenomenological relations between various transport-coefficients and thermal response functions

    A Systems Approach for Tumor Pharmacokinetics

    Get PDF
    Recent advances in genome inspired target discovery, small molecule screens, development of biological and nanotechnology have led to the introduction of a myriad of new differently sized agents into the clinic. The differences in small and large molecule delivery are becoming increasingly important in combination therapies as well as the use of drugs that modify the physiology of tumors such as anti-angiogenic treatment. The complexity of targeting has led to the development of mathematical models to facilitate understanding, but unfortunately, these studies are often only applicable to a particular molecule, making pharmacokinetic comparisons difficult. Here we develop and describe a framework for categorizing primary pharmacokinetics of drugs in tumors. For modeling purposes, we define drugs not by their mechanism of action but rather their rate-limiting step of delivery. Our simulations account for variations in perfusion, vascularization, interstitial transport, and non-linear local binding and metabolism. Based on a comparison of the fundamental rates determining uptake, drugs were classified into four categories depending on whether uptake is limited by blood flow, extravasation, interstitial diffusion, or local binding and metabolism. Simulations comparing small molecule versus macromolecular drugs show a sharp difference in distribution, which has implications for multi-drug therapies. The tissue-level distribution differs widely in tumors for small molecules versus macromolecular biologic drugs, and this should be considered in the design of agents and treatments. An example using antibodies in mouse xenografts illustrates the different in vivo behavior. This type of transport analysis can be used to aid in model development, experimental data analysis, and imaging and therapeutic agent design.National Institutes of Health (U.S.) (grant T32 CA079443

    Thermal conductivity via magnetic excitations in spin-chain materials

    Full text link
    We discuss the recent progress and the current status of experimental investigations of spin-mediated energy transport in spin-chain and spin-ladder materials with antiferromagnetic coupling. We briefly outline the central results of theoretical studies on the subject but focus mainly on recent experimental results that were obtained on materials which may be regarded as adequate physical realizations of the idealized theoretical model systems. Some open questions and unsettled issues are also addressed.Comment: 17 pages, 4 figure
    corecore