41,735 research outputs found

    Broadcasting of three qubit entanglement via local copying and entanglement swapping

    Get PDF
    In this work,We investigate the problem of secretly broadcasting of three-qubit entangled state between two distant partners. The interesting feature of this problem is that starting from two particle entangled state shared between two distant partners we find that the action of local cloner on the qubits and the measurement on the machine state vector generates three-qubit entanglement between them. The broadcasting of entanglement is made secret by sending the measurement result secretly using cryptographic scheme based on orthogonal states. Further we show that this idea can be extended to generate three particle entangled state between three distant partners.Comment: 18 pages, 4 figures, Accepted in Physical Review

    A Method of Areas for Manipulating the Entanglement Properties of One Copy of a Two-Particle Pure State

    Get PDF
    We consider the problem of how to manipulate the entanglement properties of a general two-particle pure state, shared between Alice and Bob, by using only local operations at each end and classical communication between Alice and Bob. A method is developed in which this type of problem is found to be equivalent to a problem involving the cutting and pasting of certain shapes along with a certain colouring problem. We consider two problems. Firstly we find the most general way of manipulating the state to obtain maximally entangled states. After such a manipulation the entangled state |11>+|22>+....|mm> is obtained with probability p_m. We obtain an expression for the optimal average entanglement. Also, some results of Lo and Popescu pertaining to this problem are given simple geometric proofs. Secondly, we consider how to manipulate one two particle entangled pure state to another with certainty. We derive Nielsen's theorem (which states the necessary and sufficient condition for this to be possible) using the method of areas.Comment: 29 pages, 9 figures. Section 2.4 clarified. Error in second colouring theorem (section 3.2) corrected. Some other minor change

    The Parity Bit in Quantum Cryptography

    Get PDF
    An nn-bit string is encoded as a sequence of non-orthogonal quantum states. The parity bit of that nn-bit string is described by one of two density matrices, ρ0(n)\rho_0^{(n)} and ρ1(n)\rho_1^{(n)}, both in a Hilbert space of dimension 2n2^n. In order to derive the parity bit the receiver must distinguish between the two density matrices, e.g., in terms of optimal mutual information. In this paper we find the measurement which provides the optimal mutual information about the parity bit and calculate that information. We prove that this information decreases exponentially with the length of the string in the case where the single bit states are almost fully overlapping. We believe this result will be useful in proving the ultimate security of quantum crytography in the presence of noise.Comment: 19 pages, RevTe

    Thermodynamics and the Measure of Entanglement

    Full text link
    We point out formal correspondences between thermodynamics and entanglement. By applying them to previous work, we show that entropy of entanglement is the unique measure of entanglement for pure states.Comment: 8 pages, RevTeX; edited for clarity, additional references, to appear as a Rapid Communication in Phys. Rev.

    Fault tolerant quantum key distribution protocol with collective random unitary noise

    Full text link
    We propose an easy implementable prepare-and-measure protocol for robust quantum key distribution with photon polarization. The protocol is fault tolerant against collective random unitary channel noise. The protocol does not need any collective quantum measurement or quantum memory. A security proof and a specific linear optical realization using spontaneous parametric down conversion are given.Comment: Accepted by PRA as a Rapid Communicatio

    Comment on "Quantum dense key distribution"

    Full text link
    In this Comment we question the security of recently proposed by Degiovanni et al. [Phys. Rev. A 69 (2004) 032310] scheme of quantum dense key distribution

    Entanglement Swapping Chains for General Pure States

    Get PDF
    We consider entanglement swapping schemes with general (rather than maximally) entangled bipartite states of arbitary dimension shared pairwise between three or more parties in a chain. The intermediate parties perform generalised Bell measurements with the result that the two end parties end up sharing a entangled state which can be converted into maximally entangled states. We obtain an expression for the average amount of maximal entanglement concentrated in such a scheme and show that in a certain reasonably broad class of cases this scheme is provably optimal and that, in these cases, the amount of entanglement concentrated between the two ends is equal to that which could be concentrated from the weakest link in the chain.Comment: 18 pages, 5 figure

    Eavesdropping without quantum memory

    Full text link
    In quantum cryptography the optimal eavesdropping strategy requires that the eavesdropper uses quantum memories in order to optimize her information. What happens if the eavesdropper has no quantum memory? It is shown that the best strategy is actually to adopt the simple intercept/resend strategy.Comment: 9 pages LaTeX, 3 figure

    Eavesdropping on the "ping-pong" quantum communication protocol

    Full text link
    The proposed eavesdropping scheme reveals that the quantum communication protocol recently presented by Bostrom and Felbinger [Phys. Rev. Lett. 89, 187902 (2002)] is not secure as far as quantum channel losses are taken into account

    On the origin of noisy states whose teleportation fidelity can be enhanced through dissipation

    Full text link
    Recently Badziag \emph{et al.} \cite{badziag} obtained a class of noisy states whose teleportation fidelity can be enhanced by subjecting one of the qubits to dissipative interaction with the environment via amplitude damping channel (ADC). We show that such noisy states result while sharing the states (| \Phi ^{\pm}> =\frac{1}{\sqrt{2}}(| 00> \pm | 11>)) across ADC. We also show that under similar dissipative interactions different Bell states give rise to noisy entangled states that are qualitatively very different from each other in the sense, only the noisy entangled states constructed from the Bell states (| \Phi ^{\pm}>) can \emph{}be made better sometimes by subjecting the unaffected qubit to a dissipative interaction with the environment. Importantly if the noisy state is non teleporting then it can always be made teleporting with this prescription. We derive the most general restrictions on improvement of such noisy states assuming that the damping parameters being different for both the qubits. However this curious prescription does not work for the noisy entangled states generated from (| \Psi ^{\pm}> =\frac{1}{\sqrt{2}}(| 01> \pm | 10>)). This shows that an apriori knowledge of the noisy channel might be helpful to decide which Bell state needs to be shared between Alice and Bob. \emph{}Comment: Latex, 18 pages: Revised version with a new result. Submitted to PR
    corecore