40,568 research outputs found
Atomic hydrogen cleaning of GaSb(001) surfaces
We show that the (001) surface of GaSb can be cleaned efficiently by exposure to atomic hydrogen at substrate temperatures in the range 400–470 °C. This treatment removes carbon and oxygen contamination, leaving a clean, ordered surface with a symmetric (1 × 3) reconstruction after a total H2 dose of approximately 150 kL. An ordered but partially oxidized surface is generated during cleaning, and the removal of this residual oxide is the most difficult part of the process. Auger electron spectroscopy and low energy electron diffraction were used to monitor the chemical cleanliness and the ordering of the surface during the cleaning process, whereas high resolution electron energy loss spectroscopy was used to probe the electronic structure in the near-surface region. The results obtained indicates that this cleaning procedure leaves no residual electronic damage in the near-surface region of the Te-doped (n ~ 5 × 1017 cm – 3) samples of GaSb(001) studied
Correlation functions, Bell's inequalities and the fundamental conservation laws
I derive the correlation function for a general theory of two-valued spin
variables that satisfy the fundamental conservation law of angular momentum.
The unique theory-independent correlation function is identical to the quantum
mechanical correlation function. I prove that any theory of correlations of
such discrete variables satisfying the fundamental conservation law of angular
momentum violates the Bell's inequalities. Taken together with the Bell's
theorem, this result has far reaching implications. No theory satisfying
Einstein locality, reality in the EPR-Bell sense, and the validity of the
conservation law can be constructed. Therefore, all local hidden variable
theories are incompatible with fundamental symmetries and conservation laws.
Bell's inequalities can be obeyed only by violating a conservation law. The
implications for experiments on Bell's inequalities are obvious. The result
provides new insight regarding entanglement, and its measures.Comment: LaTeX, 12pt, 11 pages, 2 figure
Accumulation layer profiles at InAs polar surfaces
High resolution electron energy loss spectroscopy, dielectric theory simulations, and charge profile calculations have been used to study the accumulation layer and surface plasmon excitations at the In-terminated (001)-(4 × 1) and (111)A-(2 × 2) surfaces of InAs. For the (001) surface, the surface state density is 4.0 ± 2.0 × 1011 cm – 2, while for the (111)A surface it is 7.5 ± 2.0 × 1011 cm – 2, these values being independent of the surface preparation procedure, bulk doping level, and substrate temperature. Changes of the bulk Fermi level with temperature and bulk doping level do, however, alter the position of the surface Fermi level. Ion bombardment and annealing of the surface affect the accumulation layer only through changes in the effective bulk doping level and the bulk momentum scattering rate, with no discernible changes in the surface charge density
Joint reality and Bell inequalities for consecutive measurements
Some new Bell inequalities for consecutive measurements are deduced under
joint realism assumption, using some perfect correlation property. No locality
condition is needed. When the measured system is a macroscopic system, joint
realism assumption substitutes the non-invasive hypothesis advantageously,
provided that the system satisfies the perfect correlation property. The new
inequalities are violated quantically. This violation can be expected to be
more severe than in the case of precedent temporal Bell inequalities. Some
microscopic and mesoscopic situations, in which the new inequalities could be
tested, are roughly considered.Comment: 7 pages, no figure
Transfer of Nonclassical Properties from A Microscopic Superposition to Macroscopic Thermal States in The High Temperature Limit
We present several examples where prominent quantum properties are
transferred from a microscopic superposition to thermal states at high
temperatures. Our work is motivated by an analogy of Schrodinger's cat paradox,
where the state corresponding to the virtual cat is a mixed thermal state with
a large average photon number. Remarkably, quantum entanglement can be produced
between thermal states with nearly the maximum Bell-inequality violation even
when the temperatures of both modes approach infinity.Comment: minor corrections, acknowledgments added, Phys.Rev.Lett., in pres
A new test of conservation laws and Lorentz invariance in relativistic gravity
General relativity predicts that energy and momentum conservation laws hold
and that preferred frames do not exist. The parametrised post-Newtonian
formalism (PPN) phenomenologically quantifies possible deviations from general
relativity. The PPN parameter alpha_3 (which identically vanishes in general
relativity) plays a dual role in that it is associated both with a violation of
the momentum conservation law, and with the existence of a preferred frame. By
considering the effects of alpha_3 neq 0 in certain binary pulsar systems, it
is shown that alpha_3 < 2.2 x 10^-20 (90% CL). This limit improves on previous
results by several orders of magnitude, and shows that pulsar tests of alpha_3
rank (together with Hughes-Drever-type tests of local Lorentz invariance) among
the most precise null experiments of physics.Comment: Submitted to Classical Quantum Gravity, LaTeX, requires ioplppt.sty,
no figure
- …