2,026 research outputs found
Searching for Gravitational Waves from the Inspiral of Precessing Binary Systems: Astrophysical Expectations and Detection Efficiency of "Spiky'' Templates
Relativistic spin-orbit and spin-spin couplings has been shown to modify the
gravitational waveforms expected from inspiraling binaries with a black hole
and a neutron star. As a result inspiral signals may be missed due to
significant losses in signal-to-noise ratio, if precession effects are ignored
in gravitational-wave searches. We examine the sensitivity of the anticipated
loss of signal-to-noise ratio on two factors: the accuracy of the precessing
waveforms adopted as the true signals and the expected distributions of
spin-orbit tilt angles, given the current understanding of their physical
origin. We find that the results obtained using signals generated by
approximate techniques are in good agreement with the ones obtained by
integrating the 2PN equations. This shows that a complete account of all
high-order post-Newtonian effects is usually not necessary for the
determination of detection efficiencies. Based on our current astrophysical
expectations, large tilt angles are not favored and as a result the decrease in
detection rate varies rather slowly with respect to the black hole spin
magnitude and is within 20--30% of the maximum possible values.Comment: 7 fig., accepted by Phys. Rev. D Minor modification
Gravitational radiation from gamma-ray bursts as observational opportunities for LIGO and VIRGO
Gamma-ray bursts are believed to originate in core-collapse of massive stars.
This produces an active nucleus containing a rapidly rotating Kerr black hole
surrounded by a uniformly magnetized torus represented by two counter-oriented
current rings. We quantify black hole spin-interactions with the torus and
charged particles along open magnetic flux-tubes subtended by the event
horizon. A major output of Egw=4e53 erg is radiated in gravitational waves of
frequency fgw=500 Hz by a quadrupole mass-moment in the torus. Consistent with
GRB-SNe, we find (i) Ts=90s (tens of s, Kouveliotou et al. 1993), (ii)
aspherical SNe of kinetic energy Esn=2e51 erg (2e51 erg in SN1998bw, Hoeflich
et al. 1999) and (iii) GRB-energies Egamma=2e50 erg (3e50erg in Frail et al.
2001). GRB-SNe occur perhaps about once a year within D=100Mpc. Correlating
LIGO/Virgo detectors enables searches for nearby events and their spectral
closure density 6e-9 around 250Hz in the stochastic background radiation in
gravitational waves. At current sensitivity, LIGO-Hanford may place an upper
bound around 150MSolar in GRB030329. Detection of Egw thus provides a method
for identifying Kerr black holes by calorimetry.Comment: to appear in PRD, 49
An -frequency dynamics algorithm for gravitational waves
Coalescence of low mass compact binaries of neutron stars and black holes are
primary burst sources for LIGO and VIRGO.Of importance in the early stages of
observations will be the classification of candidate detections by source-type.
The diversity in source parameters and serendipity in any new window of
observations suggest to consider model-independent detection algorithms. Here a
frequency dynamics algorithm is described which extracts a trajectory in the
-plane from the noisy signal. The algorithm is studied in simulated
binary coalescence. Robust results are obtained with experimental noise data.
Experiments show the method to be superior to matched filtering in the presence
of model imperfections.Comment: to appear in Rapid Commun, Phys Rev
The Parkes multibeam pulsar survey: IV. Discovery of 180 pulsars and parameters for 281 previously known pulsars
The Parkes multibeam pulsar survey has led to the discovery of more than 700
pulsars. In this paper, we provide timing solutions, flux densities and pulse
profiles for 180 of these new discoveries. Two pulsars, PSRs J1736-2843 and
J1847-0130 have rotational periods P > 6s and are therefore among the slowest
rotating radio pulsars known. Conversely, with P = 1.8ms, PSR J1843-1113 has
the third shortest period of pulsars currently known. This pulsar and PSR
J1905+0400 (P = 3.8ms) are both solitary. We also provide orbital parameters
for a new binary system, PSR J1420-5625, which has P = 34ms, an orbital period
of 40 days and a minimum companion mass of 0.4 solar masses. The 10 degree-wide
strip along the Galactic plane that was surveyed is known to contain 264 radio
pulsars that were discovered prior to the multibeam pulsar survey. We have
redetected almost all of these pulsars and provide new dispersion measure
values and flux densities at 20cm for the redetected pulsars.Comment: 35 pages, accepted for publication in MNRAS, a high quality image of
the figure on page 32 is available from
http://www.atnf.csiro.au/research/pulsar/images/pmsurvey_fig.p
Gravitational waves from coalescing binaries and Doppler experiments
Doppler tracking of interplanetary spacecraft provides the only method
presently available for broad-band searches of low frequency gravitational
waves. The instruments have a peak sensitivity around the reciprocal of the
round-trip light-time T of the radio link connecting the Earth to the
space-probe and therefore are particularly suitable to search for coalescing
binaries containing massive black holes in galactic nuclei. A number of Doppler
experiments -- the most recent involving the probes ULYSSES, GALILEO and MARS
OBSERVER -- have been carried out so far; moreover, in 2002-2004 the CASSINI
spacecraft will perform three 40 days data acquisition runs with expected
sensitivity about twenty times better than that achieved so far. Central aims
of this paper are: (i) to explore, as a function of the relevant instrumental
and astrophysical parameters, the Doppler output produced by in-spiral signals
-- sinusoids of increasing frequency and amplitude (the so-called chirp); (ii)
to identify the most important parameter regions where to concentrate intense
and dedicated data analysis; (iii) to analyze the all-sky and all-frequency
sensitivity of the CASSINI's experiments, with particular emphasis on possible
astrophysical targets, such as our Galactic Centre and the Virgo Cluster.Comment: 52 pages, LaTeX, 19 Postscript Figures, submitted to Phys. Rev.
Beam-helicity asymmetries for single-hadron production in semi-inclusive deep-inelastic scattering from unpolarized hydrogen and deuterium targets
A measurement of beam-helicity asymmetries for single-hadron production in
deep-inelastic scattering is presented. Data from the scattering of 27.6 GeV
electrons and positrons off gaseous hydrogen and deuterium targets were
collected by the HERMES experiment. The asymmetries are presented separately as
a function of the Bjorken scaling variable, the hadron transverse momentum, and
the fractional energy for charged pions and kaons as well as for protons and
anti-protons. These asymmetries are also presented as a function of the three
aforementioned kinematic variables simultaneously
Longitudinal double-spin asymmetries in semi-inclusive deep-inelastic scattering of electrons and positrons by protons and deuterons
A comprehensive collection of results on longitudinal double-spin asymmetries is presented for charged pions and kaons produced in semi-inclusive deep-inelastic scattering of electrons and positrons on the proton and deuteron, based on the full HERMES data set. The dependence of the asymmetries on hadron transverse momentum and azimuthal angle extends the sensitivity to the flavor structure of the nucleon beyond the distribution functions accessible in the collinear framework. No strong dependence on those variables is observed. In addition, the hadron charge-difference asymmetry is presented, which under certain model assumptions provides access to the helicity distributions of valence quarks
Transverse-target-spin asymmetry in exclusive -meson electroproduction
Hard exclusive electroproduction of mesons is studied with the
HERMES spectrometer at the DESY laboratory by scattering 27.6 GeV positron and
electron beams off a transversely polarized hydrogen target. The amplitudes of
five azimuthal modulations of the single-spin asymmetry of the cross section
with respect to the transverse proton polarization are measured. They are
determined in the entire kinematic region as well as for two bins in photon
virtuality and momentum transfer to the nucleon. Also, a separation of
asymmetry amplitudes into longitudinal and transverse components is done. These
results are compared to a phenomenological model that includes the pion pole
contribution. Within this model, the data favor a positive
transition form factor.Comment: DESY Report 15-14
Physics, Astrophysics and Cosmology with Gravitational Waves
Gravitational wave detectors are already operating at interesting sensitivity
levels, and they have an upgrade path that should result in secure detections
by 2014. We review the physics of gravitational waves, how they interact with
detectors (bars and interferometers), and how these detectors operate. We study
the most likely sources of gravitational waves and review the data analysis
methods that are used to extract their signals from detector noise. Then we
consider the consequences of gravitational wave detections and observations for
physics, astrophysics, and cosmology.Comment: 137 pages, 16 figures, Published version
<http://www.livingreviews.org/lrr-2009-2
- …