784 research outputs found
Comparison of runaway electron generation parameters in small, medium-sized and large tokamaks-A survey of experiments in COMPASS, TCV, ASDEX-Upgrade and JET
This paper presents a survey of the experiments on runaway electrons (RE) carried out
recently in frames of EUROFusion Consortium in different tokamaks: COMPASS, ASDEXUpgrade, TCV and JET. Massive gas injection (MGI) has been used in different scenarios for RE generation in small and medium-sized tokamaks to elaborate the most efficient and reliable ones for future RE experiments. New data on RE generated at disruptions in COMPASS
and ASDEX-Upgrade was collected and added to the JET database. Different accessible
parameters of disruptions, such as current quench rate, conversion rate of plasma current into runaways, etc have been analysed for each tokamak and compared to JET data. It was shown,
that tokamaks with larger geometrical sizes provide the wider limits for spatial and temporal
variation of plasma parameters during disruptions, thus extending the parameter space for
RE generation. The second part of experiments was dedicated to study of RE generation in
stationary discharges in COMPASS, TCV and JET. Injection of Ne/Ar have been used to
mock-up the JET MGI runaway suppression experiments. Secondary RE avalanching was
identified and quantified for the first time in the TCV tokamak in RE generating discharges
after massive Ne injection. Simulations of the primary RE generation and secondary
avalanching dynamics in stationary discharges has demonstrated that RE current fraction
created via avalanching could achieve up to 70–75% of the total plasma current in TCV.
Relaxations which are reminiscent the phenomena associated to the kinetic instability
driven by RE have been detected in RE discharges in TCV. Macroscopic parameters of RE
dominating discharges in TCV before and after onset of the instability fit well to the empirical
instability criterion, which was established in the early tokamaks and examined by results of
recent numerical simulations.EURATOM 633053Fundação para a Ciência e Tecnologia UID/FIS/50010/2013Ministry of Education and Science of the Russian Federation 14.619.21.0001, 15.08.2014, RFMEFI61914X000
Modelling of runaway electron dynamics during argon-induced disruptions in ASDEX Upgrade and JET
Disruptions in tokamak plasmas may lead to the generation of runaway electrons that have the potential to damage plasma-facing components. Improved understanding of the runaway generation process requires interpretative modelling of experiments. In this work we simulate eight discharges in the ASDEX Upgrade and JET tokamaks, where argon gas was injected to trigger the disruption. We use a fluid modelling framework with the capability to model the generation of runaway electrons through the hot-tail, Dreicer and avalanche mechanisms, as well as runaway electron losses. Using experimentally based initial values of plasma current and electron temperature and density, we can reproduce the plasma current evolution using realistic assumptions about temperature evolution and assimilation of the injected argon in the plasma. The assumptions and results are similar for the modelled discharges in ASDEX Upgrade and JET. For the modelled discharges in ASDEX Upgrade, where the initial temperature was comparatively high, we had to assume that a large fraction of the hot-tail runaway electrons were lost in order to reproduce the measured current evolution
A new generation of real-time systems in the JET tokamak
Recently a new recipe for developing and deploying
real-time systems has become increasingly adopted in the JET
tokamak. Powered by the advent of x86 multi-core technology
and the reliability of the JET’s well established Real-Time Data Network (RTDN) to handle all real-time I/O, an official Linux vanilla kernel has been demonstrated to be able to provide realtime performance to user-space applications that are required to meet stringent timing constraints. In particular, a careful rearrangement of the Interrupt ReQuests’ (IRQs) affinities together with the kernel’s CPU isolation mechanism allows to obtain either soft or hard real-time behavior depending on the synchronization mechanism adopted. Finally, the Multithreaded
Application Real-Time executor (MARTe) framework is used for
building applications particularly optimised for exploring multicore architectures. In the past year, four new systems based on this philosophy have been installed and are now part of the JET’s routine operation. The focus of the present work is on the configuration and interconnection of the ingredients that enable these new systems’ real-time capability and on the impact that JET’s distributed real-time architecture has on system engineering requirements, such as algorithm testing and plant commissioning. Details are given about the common real-time configuration and development path of these systems, followed by a brief description of each system together with results regarding their real-time performance. A cycle time jitter analysis of a user-space MARTe based application synchronising over a network is also presented. The goal is to compare its
deterministic performance while running on a vanilla and on a Messaging Real time Grid (MRG) Linux kernel
A novel path to runaway electron mitigation via deuterium injection and current-driven MHD instability
Relativistic electron (RE) beams at high current density (low safety factor, q ( a )) yet very low free-electron density accessed with D-2 secondary injection in the DIII-D and JET tokamak are found to exhibit large-scale MHD instabilities that benignly terminate the RE beam. In JET, this technique has enabled termination of MA-level RE currents without measurable first-wall heating. This scenario thus offers an unexpected alternate pathway to achieve RE mitigation without collisional dissipation. Benign termination is explained by two synergistic effects. First, during the MHD-driven RE loss events both experiment and MHD orbit-loss modeling supports a significant increase in the wetted area of the RE loss. Second, as previously identified at JET and DIII-D, the fast kink loss timescale precludes RE beam regeneration and the resulting dangerous conversion of magnetic to RE kinetic energy. During the termination, the RE kinetic energy is lost to the wall, but the current fully transfers to the cold bulk thus enabling benign Ohmic dissipation of the magnetic energy on longer timescales via a conventional current quench. Hydrogenic (D-2) secondary injection is found to be the only injected species that enables access to the benign termination. D-2 injection: (1) facilitates access to low q ( a ) in existing devices (via reduced collisionality & resistivity), (2) minimizes the RE avalanche by 'purging' the high-Z atoms from the RE beam, (3) drives recombination of the background plasma, reducing the density and Alfven time, thus accelerating the MHD growth. This phenomenon is found to be accessible when crossing the low q ( a ) stability boundary with rising current, falling toroidal field, or contracting minor radius-the latter being the expected scenario for vertically unstable RE beams in ITER. While unexpected, this path scales favorably to fusion-grade tokamaks and offers a novel RE mitigation scenario in principle accessible with the day-one disruption mitigation system of ITER
- …