88 research outputs found

    Advances in Microstructural Understanding of Wrought Aluminum Alloys

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2020-03-12, registration 2020-06-24, online 2020-07-08, pub-electronic 2020-07-08, pub-print 2020-09Publication status: PublishedAbstract: Wrought aluminum alloys are an attractive option in the quest for lightweight, recyclable, structural materials. Modern wrought aluminum alloys depend on control of complex microstructures to obtain their properties. This requires an understanding of the coupling between alloy composition, processing, and microstructure. This paper summarizes recent work to understand microstructural evolution in such alloys, utilizing the advanced characterization techniques now available such as atom probe tomography, high-resolution electron microscopy, and synchrotron X-ray diffraction and scattering. New insights into precipitation processes, deformation behavior, and texture evolution are discussed. Recent progress in predicting microstructural evolution using computer modeling is also summarized

    First-principle solubilities of alkali and alkaline earth metals in Mg-B alloys

    Full text link
    By devising a novel framework, we present a comprehensive theoretical study of solubilities of alkali (Li, Na, K, Rb, Cs) and alkaline earth (Be, Ca, Sr, Ba) metals in the he boron-rich Mg-B system. The study is based on first-principle calculations of solutes formation energies in MgB2_2, MgB4_4, MgB7_7 alloys and subsequent statistical-thermodynamical evaluation of solubilities. The advantage of the approach consists in considering all the known phase boundaries in the ternary phase diagram. Substitutional Na, Ca, and Li demonstrate the largest solubilities, and Na has the highest (0.5-1 % in MgB7_7 at T=6501000T=650-1000 K). All the considered interstitials have negligible solubilities. The solubility of Be in MgB7_7 can not be determined because the corresponding low-solubility formation energy is negative indicating the existence of an unknown ternary ground state. We have performed a high-throughput search of ground states in binary Mg-B, Mg-AA, and B-AA systems, and we construct the ternary phase diagrams of Mg-B-AA alloys based on the stable binary phases. Despite its high temperature observations, we find that Sr9_{9}Mg38_{38} is not a low-temperature equilibrium structure. We also determine two new possible ground states CaB4_{4} and RbB4_{4}, not yet observed experimentally.Comment: 5 figure

    Neutron Diffraction Measurement of As-Cast Residual Stresses in Aa7050 Rolling Plate Ingots: Influence of A Wiper

    Get PDF
    During casting, thermally induced deformations give birth to ingot distortions and residual stresses. For some high strength alloys, ingot cracking can happen during casting per se or during cooling down. Ingot distortions such as rolling face pull-in, but curl and but swell are rather easy to quantify as opposed to internal stresses. As aluminium is rather transparent to neutrons, residual stress measurements using neutron diffraction appeared to be a good way to validate the thermomechanical models aimed at simulating the stress build-up during casting. This technique has been applied to DC cast AA7050 rolling plate ingots with special attention to the stress generation in the transient start-up phase, i.e. in the foot of the ingot. Additional results using the hole drilling method complement the measurements. The measured stress distributions are compared with the results of a numerical model of DC casting for ingots cast with and without a wiper

    On the effect of concentrated solid solutions on properties of clusters in a model binary alloy

    No full text
    International audienceIn a series of papers aimed at better understanding precipitation in binary alloys, it was shown that Cluster Dynamics (CD) is a valuable tool to bridge the gap between microscopic and macroscopic scales, provided that cluster-free energies are carefully derived from Monte Carlo calculations. Indeed, in such conditions, CD predictions compare well with Atomistic Kinetic MC simulations. Nevertheless, in a recent work, the authors pointed out some limitations of this approach at high solute concentration. The present work aims at revisiting the notion of cluster-free energy in the context of concentrated solid solutions at thermal equilibrium

    Precipitate growth in concentrated binary alloys: a comparison between kinetic Monte Carlo simulations, cluster dynamics and the classical theory

    No full text
    International audienceThe numerical modelling of concentrated alloy precipitation kinetics remains a challenge at all scales. At the microscopic scale, kinetic Monte Carlo (KMC) simulations can cope with nucleation and early growth whatever the solute concentration may be; it cannot, however, address coarsening. At the mesoscopic scale, the advantage of cluster dynamics (CD) is its ability to describe the whole kinetics of precipitation but lacks of reliability for nucleation in concentrated alloys. Finally, analytical models are preferred at the macroscopic scale for their simplicity, their flexibility and their ability to be incorporated within more general approaches, to predict mechanical properties, for instance. The present work aims at examining the ability of CD and classical analytical models to describe the growth of an isolated precipitate in a concentrated binary alloy, by comparison with KMC simulations taken as the reference

    Application of cluster dynamics modeling to the precipitation in aluminum alloys

    No full text
    International audienceThe cluster dynamics method is used to model at the atomic scale the kinetics of first order phase transformations. Clusters are embryos of the growing phase. Their formation kinetics from the solid solution are obtained by solving a set of master differential equations. This set is the continuity equation of the cluster size distribution function and is based on inter-cluster solute exchanges. These exchanges, absorption and emission of solute atoms, are controlled by the solute diffusivities and the cluster free energies. The model is applied here to the precipitation of Al-3(Zr, Sc) dispersoids with the Ll(2) structure in Al-rich Zr-Sc solid solutions. Several characteristic features are obtained and discussed: 1) In the ternary alloy, the fast (Sc) diffusing species always controls the nucleation, in contrast to classical thermodynamical descriptions. 2) A Zr-Sc thermodynamic coupling induces heterogeneous nucleation on Zr atoms. 3) A segregation on the dispersoids outer shell of the slow diffusing solute (Zr) occurs during the coarsening stage, slowing down their coarsening rate. Finally, some extensions and prospects of the method are considered

    Optimizing New Aluminum Alloys Through Computer Simulation

    No full text
    corecore