2 research outputs found
Dissecting the genetic basis for seed coat mucilage heteroxylan biosynthesis in Plantago ovata using gamma irradiation and infrared spectroscopy
Seeds from the myxospermous species Plantago ovata release a polysaccharide-rich mucilage upon contact with water. This seed coat derived mucilage is composed predominantly of heteroxylan (HX) and is utilized as a gluten-free dietary fiber supplement to promote human colorectal health. In this study, a gamma-irradiated P. ovata population was generated and screened using histological stains and Fourier Transform Mid Infrared (FTMIR) spectroscopy to identify putative mutants showing defects in seed coat mucilage HX composition and/or structure. FTMIR analysis of dry seed revealed variation in regions of the IR spectra previously linked to xylan structure in Secale cereale (rye). Subsequent absorbance ratio and PCA multivariate analysis identified 22 putative mutant families with differences in the HX IR fingerprint region. Many of these showed distinct changes in the amount and subtle changes in structure of HX after mucilage extrusion, while 20% of the putative HX mutants identified by FTMIR showed no difference in staining patterns of extruded mucilage compared to wildtype. Transcriptional screening analysis of two putative reduced xylan in mucilage (rxm) mutants, rxm1 and rxm3, revealed that changes in HX levels in rxm1 correlate with reduced transcription of known and novel genes associated with xylan synthesis, possibly indicative of specific co-regulatory units within the xylan biosynthetic pathway. These results confirm that FTMIR is a suitable method for identifying putative mutants with altered mucilage HX composition in P. ovata, and therefore forms a resource to identify novel genes involved in xylan biosynthesis
Optimization and decision making of guide vane closing law for pumped storage hydropower system to improve adaptability under complex conditions
The pumped storage hydropower system (PSHS) is considered a high-quality peaking and frequency regulation energy source due to its operational flexibility and fast response. However, its frequent regulation leads to complex operating conditions with potential harm to the stability of the system. This paper focuses on analyzing and improving the adaptability of guide vane closing law under complex conditions. This is obtained by proposing a refined numerical model of PSHS considering non-linear factors and analyzing the effects of the guide vane closing law and initial operating conditions on the load rejection. The results revealed that a suitable two-stage guide vane closing law effectively reduces the risk of load rejection. In addition, when the initial load of two units is different, it is beneficial to improve the load rejection characteristics when the unit with the smaller load rejects the load first. Finally, three groups of parameters for the optimal guide vane closing law (the Pareto solution sets) are obtained by multi-objective sparrow search algorithm (MOSSA) under the rated, maximum water head, and maximum rotational speed conditions. The obtained Pareto solution and the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) are used for scoring the solutions and obtain an optimal suitable for complex operating conditions. The water head and rotational speed are reduced by an average of 7.76 % and 3.74 % for the different operating conditions compared to the model validation results, respectively. These results provide a theoretical basis for the selection of the optimal guide vane closing laws and improve the safety during load rejection under complex practical operating conditions