1,310 research outputs found
Primordial magnetic fields and the HI signal from the epoch of reionization
The implication of primordial magnetic-field-induced structure formation for
the HI signal from the epoch of reionization is studied. Using semi-analytic
models, we compute both the density and ionization inhomogeneities in this
scenario. We show that: (a) The global HI signal can only be seen in emission,
unlike in the standard CDM models, (b) the density perturbations
induced by primordial fields, leave distinctive signatures of the magnetic
field Jeans' length on the HI two-point correlation function, (c) the length
scale of ionization inhomogeneities is \la 1 \rm Mpc. We find that the peak
expected signal (two-point correlation function) is in
the range of scales for magnetic field strength in the
range . We also discuss the
detectability of the HI signal. The angular resolution of the on-going and
planned radio interferometers allows one to probe only the largest magnetic
field strengths that we consider. They have the sensitivity to detect the
magnetic field-induced features. We show that thefuture SKA has both the
angular resolution and the sensitivity to detect the magnetic field-induced
signal in the entire range of magnetic field values we consider, in an
integration time of one week.Comment: 19 pages, 5 figures, to appear in JCA
Measurement of \cal{B}(D^+ --> mu^+ nu) and the Pseudoscalar Decay Constant
In 60 pb-1 of data taken on the psi(3770) resonance with the CLEO-c detector,
we find 8 D+ to mu+ nu event candidates that are mostly signal, containing only
1 estimated background. Using this statistically compelling sample, we measure
preliminary values of B(D+ to mu+ nu) = (3.5 +- 1.4 +- 0.6)*10^{-4}, and
determine f_{D+} =(201+- 41+- 17) MeV.Comment: 17 pages postscript, also available through
http://www.lns.cornell.edu/public/CONF/2004/, Presented at ICHEP Aug
16-22,2004, Beijing, Chin
Improved Measurement of the Form Factors in the Decay Lambda_c^+ --> Lambda e^+ nu_e
Using the CLEO detector at the Cornell Electron Storage Ring, we have studied
the distribution of kinematic variables in the decay Lambda_c^+ -> Lambda e^+
nu_e. By performing a four-dimensional maximum likelihood fit, we determine the
form factor ratio, R = f_2/f_1 = -0.31 +/- 0.05(stat) +/- 0.04(syst), the pole
mass, M_{pole} = (2.21 +/- 0.08(stat) +/- 0.14(syst)) GeV/c^2, and the decay
asymmetry parameter of the Lambda_c, alpha_{Lambda_c} = -0.86 +/- 0.03(stat)
+/- 0.02(syst), for = 0.67 (GeV/c^2)^2. We compare the angular
distributions of the Lambda_c^+ and Lambda_c^- and find no evidence for
CP-violation: A_{Lambda_c} = (alpha_{Lambda_c^+} + alpha_{Lambda_c^-})/
(alpha_{Lambda_c^+} - alpha_{Lambda_c^-}) = 0.00 +/- 0.03(stat) +/- 0.01(syst)
+/- 0.02, where the third error is from the uncertainty in the world average of
the CP-violating parameter, A_{Lambda}, for Lambda -> p pi^-.Comment: 8 pages postscript,also available through
http://www.lns.cornell.edu/public/CLNS/2004/, submitted to PR
Observation of the Dynamic Beta Effect at CESR with CLEO
Using the silicon strip detector of the CLEO experiment operating at the
Cornell Electron-positron Storage Ring (CESR), we have observed that the
horizontal size of the luminous region decreases in the presence of the
beam-beam interaction from what is expected without the beam-beam interaction.
The dependence on the bunch current agrees with the prediction of the dynamic
beta effect. This is the first direct observation of the effect.Comment: 9 page uuencoded postscript file, postscritp file also available
through http://w4.lns.cornell.edu/public/CLNS, submitted to Phys. Rev.
Update of the measurement of the cross section for e^+e^- -> psi(3770) -> hadrons
We have updated our measurement of the cross section for e^+e^- -> psi(3770)
-> hadrons, our publication "Measurement of sigma(e^+e^- -> psi(3770) ->
hadrons) at E_{c.m.} = 3773 MeV", arXiv:hep-ex/0512038, Phys.Rev.Lett.96,
092002 (2006). Simultaneous with this arXiv update, we have published an
erratum in Phys.Rev.Lett.104, 159901 (2010). There, and in this update, we have
corrected a mistake in the computation of the error on the difference of the
cross sections for e^+e^- -> psi(3770) -> hadrons and e^+e^- -> psi(3770) ->
DDbar. We have also used a more recent CLEO measurement of cross section for
e^+e^- -> psi(3770) -> DDbar. From this, we obtain an upper limit on the
branching fraction for psi(3770) -> non-DDbar of 9% at 90% confidence level.Comment: 3 pages, 0 figures. This is an erratum to
Phys.Rev.Lett.96:092002,2006. Added a reference
Branching Fraction Measurements of psi(2S) Decay to Baryon-Antibaryon Final States
Using 3.08 million psi(2S) decays observed in e^+e^- collisions by the CLEO
detector, we present the results of a study of the psi(2S) decaying into
baryon-antibaryon final states. We report the most precise measurements of the
following eight modes: proton-antiproton, lambda-antilambda, Xi^- antiXi^-,
Xi^0-antiXi^0 (first observation), Sigma+-antiSigma^+ (first observation), and
Sigma^0-antiSigma^0, and place upper limits for the modes, Xi^0*-antiXi^0* and
Omega^- antiOmega^-.Comment: 8 pages postscript,also available through
http://www.lns.cornell.edu/public/CLNS/2005/, submitted to PR
Observation of the Hadronic Transitions Chi_{b 1,2}(2P) -> omega Upsilon(1S)
The CLEO Collaboration has observed the first hadronic transition among
bottomonium (b bbar) states other than the dipion transitions among vector
states, Upsilon(nS) -> pi pi Upsilon(mS). In our study of Upsilon(3S) decays,
we find a significant signal for Upsilon(3S) -> gamma omega Upsilon(1S) that is
consistent with radiative decays Upsilon(3S) -> gamma chi_{b 1,2}(2P), followed
by chi_{b 1,2} -> omega Upsilon(1S). The branching ratios we obtain are
Br(chi_{b1} -> omega Upsilon(1S) = 1.63 (+0.35 -0.31) (+0.16 -0.15) % and
Br(chi_{b2} -> omega Upsilon(1S) = 1.10 (+0.32 -0.28) (+0.11 - 0.10)%, in which
the first error is statistical and the second is systematic.Comment: submitted to XXI Intern'l Symp on Lepton and Photon Interact'ns at
High Energies, August 2003, Fermila
Moments of the B Meson Inclusive Semileptonic Decay Rate using Neutrino Reconstruction
We present a measurement of the composition of B meson inclusive semileptonic
decays using 9.4 fb^-1 of e^+e^- data taken with the CLEO detector at the
Upsilon(4S) resonance. In addition to measuring the charged lepton kinematics,
the neutrino four-vector is inferred using the hermiticity of the detector. We
perform a maximum likelihood fit over the full three-dimensional differential
decay distribution for the fractional contributions from the B -> X_c l nu
processes with X_c = D, D*, D**, and nonresonant X_c, and the process B -> X_u
l nu. From the fit results we extract the first and second moments of the M_X^2
and q^2 distributions with minimum lepton-energy requirements of 1.0 GeV and
1.5 GeV. We find = 0.456 +- 0.014 +- 0.045 +- 0.109
(GeV/c^2)^2 with a minimum lepton energy of 1.0 GeV and =
0.293 +- 0.012 +- 0.033 +- 0.048 (GeV/c^2)^2 with minimum lepton energy of 1.5
GeV. The uncertainties are from statistics, detector systematic effects, and
model dependence, respectively. As a test of the HQET and OPE calculations, the
results for the M^X_c moment as a function of the minimum lepton energy
requirement are compared to the predictions.Comment: 26 pages postscript, als available through
http://w4.lns.cornell.edu/public/CLNS/, Submitted to PRD (back-to-back with
following preprint hep-ex/0403053
- …
