41,190 research outputs found

    Evaluation of heating effects on atoms trapped in an optical trap

    Get PDF
    We solve a stochastic master equation based on the theory of Savard et al. [T. A. Savard. K. M. O'Hara, and J. E. Thomas, Phys, Rev. A 56, R1095 (1997)] for heating arising from fluctuations in the trapping laser intensity. We compare with recent experiments of Ye et al. [J. Ye, D. W. Vernooy, and H. J. Kimble, Phys. Rev. Lett. 83, 4987 (1999)], and find good agreement with the experimental measurements of the distribution of trap occupancy times. The major cause of trap loss arises from the broadening of the energy distribution of the trapped atom, rather than the mean heating rate, which is a very much smaller effect

    Quantum nonlocality of four-qubit entangled states

    Get PDF
    Quantum nonlocality of several four-qubit states is investigated by constructing a new Bell inequality. These include the Greenberger-Zeilinger-Horne (GHZ) state, W state, cluster state, and the state χ>|\chi> that has been recently proposed in [PRL, {\bf 96}, 060502 (2006)]. The Bell inequality is optimally violated by χ>|\chi> but not violated by the GHZ state. The cluster state also violates the Bell inequality though not optimally. The state χ>|\chi> can thus be discriminated from the cluster state by using the inequality. Different aspects of four-partite entanglement are also studied by considering the usefulness of a family of four-qubit mixed states as resources for two-qubit teleportation. Our results generalize those in [PRL, {\bf 72}, 797 (1994)].Comment: 13 pages, 1 figur

    Fiber Orientation Estimation Guided by a Deep Network

    Full text link
    Diffusion magnetic resonance imaging (dMRI) is currently the only tool for noninvasively imaging the brain's white matter tracts. The fiber orientation (FO) is a key feature computed from dMRI for fiber tract reconstruction. Because the number of FOs in a voxel is usually small, dictionary-based sparse reconstruction has been used to estimate FOs with a relatively small number of diffusion gradients. However, accurate FO estimation in regions with complex FO configurations in the presence of noise can still be challenging. In this work we explore the use of a deep network for FO estimation in a dictionary-based framework and propose an algorithm named Fiber Orientation Reconstruction guided by a Deep Network (FORDN). FORDN consists of two steps. First, we use a smaller dictionary encoding coarse basis FOs to represent the diffusion signals. To estimate the mixture fractions of the dictionary atoms (and thus coarse FOs), a deep network is designed specifically for solving the sparse reconstruction problem. Here, the smaller dictionary is used to reduce the computational cost of training. Second, the coarse FOs inform the final FO estimation, where a larger dictionary encoding dense basis FOs is used and a weighted l1-norm regularized least squares problem is solved to encourage FOs that are consistent with the network output. FORDN was evaluated and compared with state-of-the-art algorithms that estimate FOs using sparse reconstruction on simulated and real dMRI data, and the results demonstrate the benefit of using a deep network for FO estimation.Comment: A shorter version is accepted by MICCAI 201

    Proper Scaling of the Anomalous Hall Effect

    Full text link
    Working with epitaxial films of Fe, we succeeded in independent control of different scattering processes in the anomalous Hall effect. The result appropriately accounted for the role of phonons, thereby clearly exposing the fundamental flaws of the standard plot of the anomalous Hall resistivity versus longitudinal resistivity. A new scaling has been thus established that allows an unambiguous identification of the intrinsic Berry curvature mechanism as well as the extrinsic skew scattering and side-jump mechanisms of the anomalous Hall effect.Comment: 5 pages, 4 figure
    corecore