52 research outputs found
The Effects of Larval Nutrition on Reproductive Performance in a Food-Limited Adult Environment
It is often assumed that larval food stress reduces lifetime fitness regardless
of the conditions subsequently faced by adults. However, according to the
environment-matching hypothesis, a plastic developmental response to poor
nutrition results in an adult phenotype that is better adapted to restricted
food conditions than one having developed in high food conditions. Such a
strategy might evolve when current conditions are a reliable predictor of future
conditions. To test this hypothesis, we assessed the effects of larval food
conditions (low, improving and high food) on reproductive fitness in both low
and high food adults environments. Contrary to this hypothesis, we found no
evidence that food restriction in larval ladybird beetles produced adults that
were better suited to continuing food stress. In fact, reproductive rate was
invariably lower in females that were reared at low food, regardless of whether
adults were well fed or food stressed. Juveniles that encountered improving
conditions during the larval stage compensated for delayed growth by
accelerating subsequent growth, and thus showed no evidence of a reduced
reproductive rate. However, these same individuals lost more mass during the
period of starvation in adults, which indicates that accelerated growth results
in an increased risk of starvation during subsequent periods of food stress
Differential Effects of Early- and Late-Life Access to Carotenoids on Adult Immune Function and Ornamentation in Mallard Ducks (Anas platyrhynchos)
Environmental conditions early in life can affect an organism’s phenotype at adulthood, which may be tuned to perform optimally in conditions that mimic those experienced during development (Environmental Matching hypothesis), or may be generally superior when conditions during development were of higher quality (Silver Spoon hypothesis). Here, we tested these hypotheses by examining how diet during development interacted with diet during adulthood to affect adult sexually selected ornamentation and immune function in male mallard ducks (Anas platyrhynchos). Mallards have yellow, carotenoid-pigmented beaks that are used in mate choice, and the degree of beak coloration has been linked to adult immune function. Using a 2×2 factorial experimental design, we reared mallards on diets containing either low or high levels of carotenoids (nutrients that cannot be synthesized de novo) throughout the period of growth, and then provided adults with one of these two diets while simultaneously quantifying beak coloration and response to a variety of immune challenges. We found that both developmental and adult carotenoid supplementation increased circulating carotenoid levels during dietary treatment, but that birds that received low-carotenoid diets during development maintained relatively higher circulating carotenoid levels during an adult immune challenge. Individuals that received low levels of carotenoids during development had larger phytohemagglutinin (PHA)-induced cutaneous immune responses at adulthood; however, dietary treatment during development and adulthood did not affect antibody response to a novel antigen, nitric oxide production, natural antibody levels, hemolytic capacity of the plasma, or beak coloration. However, beak coloration prior to immune challenges positively predicted PHA response, and strong PHA responses were correlated with losses in carotenoid-pigmented coloration. In sum, we did not find consistent support for either the Environmental Matching or Silver Spoon hypotheses. We then describe a new hypothesis that should be tested in future studies examining developmental plasticity
The role of sexual selection and conflict in mediating among-population variation in mating strategies and sexually dimorphic traits in Sepsis punctum
The black scavenger fly Sepsis punctum exhibits striking among-population variation in the direction and magnitude of sexual size dimorphism, modification to the male forelimb and pre-copulatory behaviour. In some populations, male-biased sexual size dimorphism is observed; in other, less dimorphic, populations males court prior to mating. Such variation in reproductive traits is of interest to evolutionary biologists because it has the potential to limit gene flow among populations, contributing to speciation. Here, we investigate whether large male body size and modified forefemur are associated with higher male mating success within populations, whether these traits are associated with higher mating success among populations, and if these traits carry viability costs that could constrain their response to sexual selection. Flies from five distinct populations were reared at high or low food, generating high and low quality males. The expression of body size, forelimb morphology and courtship rate were each greater at high food, but high food males experienced higher mating success or reduced latency to first copulation in only one of the populations. Among populations, overall mating success increased with the degree of male-bias in overall body size and forelimb modification, suggesting that these traits have evolved as a means of increasing male mating rate. The increased mating success observed in large-male populations raises the question of why variation in magnitude of dimorphism persists among populations. One reason may be that costs of producing a large size constrain the evolution of ever-larger males. We found no evidence that juvenile mortality under food stress was greater for large-male populations, but development time was considerably longer and may represent an important constraint in an ephemeral and competitive growth environment
- …