26 research outputs found

    Agrp neuron activity is required for alcohol-induced overeating

    Get PDF
    Alcohol intake associates with overeating in humans. This overeating is a clinical concern, but its causes are puzzling, because alcohol (ethanol) is a calorie-dense nutrient, and calorie intake usually suppresses brain appetite signals. The biological factors necessary for ethanol-induced overeating remain unclear, and societal causes have been proposed. Here we show that core elements of the brain’s feeding circuits—the hypothalamic Agrp neurons that are normally activated by starvation and evoke intense hunger—display electrical and biochemical hyperactivity on exposure to dietary doses of ethanol in brain slices. Furthermore, by circuit-specific chemogenetic interference in vivo, we find that the Agrp cell activity is essential for ethanol-induced overeating in the absence of societal factors, in single-housed mice. These data reveal how a widely consumed nutrient can paradoxically sustain brain starvation signals, and identify a biological factor required for appetite evoked by alcohol

    Constitutive expression of hZnT4 zinc transporter in human breast epithelial cells.

    No full text
    Zinc is an essential trace element required by all living organisms. An adequate supply of zinc is particularly important in the neonatal period. Zinc is a significant component of breast milk, which is transported across the maternal epithelia during lactation. The mechanisms by which zinc becomes a constituent of breast milk have not been elucidated. The function of the zinc transporter ZnT4 in the transport of zinc into milk during lactation was previously demonstrated by studies of a mouse mutant, the 'lethal milk' mouse, where a mutation in the ZnT4 gene decreased the transport of zinc into milk. In the present study, we have investigated the expression of the human orthologue of ZnT4 (hZnT4) in the human breast. We detected hZnT4 mRNA expression in the tissue from the resting and lactating human breast, using reverse-transcriptase PCR. Western-blot analysis using antibodies to peptide sequences of hZnT4 detected a major band of the predicted size of 47 kDa and a minor band of 77 kDa, in extracts from the resting and lactating breast tissues. There was no difference in the hZnT4 expression levels between lactating and resting breasts. The hZnT4 protein was present in the luminal cells of the ducts and alveoli where it had a granular distribution. A cultured human breast epithelial cell line PMC42 was used to investigate the subcellular distribution of hZnT4 and this showed a granular label throughout the cytoplasm, consistent with a vesicular localization. The presence of zinc-containing intracellular vesicles was demonstrated by using the zinc-specific fluorphore Zinquin (ethyl-[2-methyl-8-p-toluenesulphonamido-6-quinolyloxy]acetate). Double labelling indicated that there was no obvious overlap between Zinquin and the hZnT4 protein, suggesting that hZnT4 was not directly involved in the transport of zinc into vesicles. We detected expression of two other members of the hZnT family, hZnT1 and hZnT3, in human breast epithelial cells. We conclude that hZnT4 is constitutively expressed in the human breast and may be one of the several members of the ZnT family involved in the transport of zinc into milk

    Analysis of zinc transporter, hZnT4(Slc30A4), gene expression in a mammary gland disorder leading to reduced zinc secretion into milk

    Full text link
    Zinc deficiency, causing impaired growth and development, may have a nutritional or genetic basis. We investigated two cases of inherited zinc deficiency found in breast-fed neonates, caused by low levels of zinc in the maternal milk. This condition is different from acrodermatitis enteropathica but has similarities to the &quot;lethal milk&quot; mouse, where low levels of zinc in the milk of lactating dams leads to zinc deficiency in pups. The mouse disorder has been attributed to a defect in the ZnT4 gene. Little is known about the expression of the human orthologue, hZnT4 (Slc30A4). Sequence analysis of cDNA, real-time PCR and Western blot analysis of hZnT4, carried out on control cells and cells from unrelated mothers of two infants with zinc deficiency, showed no differences. The hZnT4 gene was highly expressed in mouthwash buccal cells compared with lymphoblasts and fibroblasts. The hZnT4 protein did not co-localise with intracellular free zinc pools, suggesting that hZnT4 is not involved in transport of zinc into vesicles destined for secretion into milk. This observation, combined with phenotypic differences between the &quot;lethal milk&quot; mouse and the human disorder, suggests that the &quot;lethal milk&quot; mouse is not the corresponding model for the human zinc deficiency condition.<br /

    Ethanol affects striatal interneurons directly and projection neurons through a reduction in cholinergic tone

    Get PDF
    The acute effects of ethanol on the neurons of the striatum, a basal ganglia nucleus crucially involved in motor control and action selection, were investigated using whole-cell recordings. An intoxicating concentration of ethanol (50 mM) produced inhibitory effects on striatal large aspiny cholinergic interneurons (LAIs) and low-threshold spike interneurons (LTSIs). These effects persisted in the presence of tetrodotoxin and were because of an increase in potassium currents, including those responsible for medium and slow afterhyperpolarizations. In contrast, fast-spiking interneurons (FSIs) were directly excited by ethanol, which depolarized these neurons through the suppression of potassium currents. Medium spiny neurons (MSNs) became hyperpolarized in the presence of ethanol, but this effect did not persist in the presence of tetrodotoxin and was mimicked and occluded by application of the M1 muscarinic receptor antagonist telenzepine. Ethanol effects on MSNs were also abolished by 100 μM barium. This showed that the hyperpolarizations observed in MSNs were because of decreased tonic activation of M1 muscarinic receptors, resulting in an increase in Kir2 conductances. Evoked GABAergic responses of MSNs were reversibly decreased by ethanol with no change in paired-pulse ratio. Furthermore, ethanol impaired the ability of thalamostriatal inputs to inhibit a subsequent corticostriatal glutamatergic response in MSNs. These results offer the first comprehensive description of the highly cell type-specific effects of ethanol on striatal neurons and provide a cellular basis for the interpretation of ethanol influence on a brain area crucially involved in the motor and decisional impairment caused by this drug
    corecore