17 research outputs found

    New Results on Optimizing Rooted Triplets Consistency

    Get PDF
    A set of phylogenetic trees with overlapping leaf sets is consistent if it can be merged without conflicts into a supertree. In this paper, we study the polynomial-time approximability of two related optimization problems called the maximum rooted triplets consistency problem (\textsc{MaxRTC}) and the minimum rooted triplets inconsistency problem (\textsc{MinRTI}) in which the input is a set R\mathcal{R} of rooted triplets, and where the objectives are to find a largest cardinality subset of R\mathcal{R} which is consistent and a smallest cardinality subset of R\mathcal{R} whose removal from R\mathcal{R} results in a consistent set, respectively. We first show that a simple modification to Wu’s Best-Pair-Merge-First heuristic [25] results in a bottom-up-based 3-approximation for \textsc{MaxRTC}. We then demonstrate how any approximation algorithm for \textsc{MinRTI} could be used to approximate \textsc{MaxRTC}, and thus obtain the first polynomial-time approximation algorithm for \textsc{MaxRTC} with approximation ratio smaller than 3. Next, we prove that f

    Unbounded lower bound for k-server against weak adversaries

    Get PDF
    We study the resource augmented version of the kk-server problem, also known as the kk-server problem against weak adversaries or the (h,k)(h,k)-server problem. In this setting, an online algorithm using kk servers is compared to an offline algorithm using hh servers, where hkh\le k. For uniform metrics, it has been known since the seminal work of Sleator and Tarjan (1985) that for any ϵ>0\epsilon>0, the competitive ratio drops to a constant if k=(1+ϵ)hk=(1+\epsilon) \cdot h. This result was later generalized to weighted stars (Young 1994) and trees of bounded depth (Bansal et al. 2017). The main open problem for this setting is whether a similar phenomenon occurs on general metrics. We resolve this question negatively. With a simple recursive construction, we show that the competitive ratio is at least Ω(loglogh)\Omega(\log \log h), even as kk\to\infty. Our lower bound holds for both deterministic and randomized algorithms. It also disproves the existence of a competitive algorithm for the infinite server problem on general metrics.Comment: To appear in STOC 202

    Unbounded lower bound for k-server against weak adversaries

    Get PDF
    We study the resource augmented version of the k-server problem, also known as the k-server problem against weak adversaries or the (h,k)-server problem. In this setting, an online algorithm using k servers is compared to an offline algorithm using h servers, where h ≤ k. For uniform metrics, it has been known since the seminal work of Sleator and Tarjan (1985) that for any ">0, the competitive ratio drops to a constant if k=(1+") · h. This result was later generalized to weighted stars (Young 1994) and trees of bounded depth (Bansal et al. 2017). The main open problem for this setting is whether a similar phenomenon occurs on general metrics. We resolve this question negatively. With a simple recursive construction, we show that the competitive ratio is at least ω(loglogh), even as k→∞. Our lower bound holds for both deterministic and randomized algorithms. It also disproves the existence of a competitive algorithm for the infinite server problem on general metrics

    Bucket game with applications to set multicover and dynamic page migration

    No full text
    We present a simple two-person Bucket Game, based on throwing balls into buckets, and we discuss possible players’ strategies. We use these strategies to create an approximation algorithm for a generalization of the well known Set Cover problem, where we need to cover each element by at least k sets. Furthermore, we apply these strategies to construct a randomized algorithm for Dynamic Page Migration problem achieving the optimal competitive ratio against an oblivious adversary

    Bucket Game with Applications to Set Multicover and Dynamic Page Migration

    No full text
    We present a simple two-person Bucket Game, based on throwing balls into buckets, and we discuss possible players’ strategies. We use these strategies to create an approximation algorithm for a generalization of the well known Set Cover problem, where we need to cover each element by at least k sets. Furthermore, we apply these strategies to construct a randomized algorithm for Dynamic Page Migration problem achieving the optimal competitive ratio against an oblivious adversary

    An Optimal Bifactor Approximation Algorithm for the Metric Uncapacitated Facility Location Problem

    No full text
    We obtain a 1.5-approximation algorithm for the metric uncapacitated facility location (UFL) problem, which improves on the previously best known 1.52-approximation algorithm by Mahdian, Ye, and Zhang. Note that the approximability lower bound by Guha and Khuller is 1.4631.463\dots. An algorithm is a (λf\lambda_f,λc\lambda_c)-approximation algorithm if the solution it produces has total cost at most λfF+λcC\lambda_f\cdot F^*+\lambda_c\cdot C^*, where FF^* and CC^* are the facility and the connection cost of an optimal solution. Our new algorithm, which is a modification of the (1+2/e)(1+2/e)-approximation algorithm of Chudak and Shmoys, is a (1.6774,1.3738)(1.6774,1.3738)-approximation algorithm for the UFL problem and is the first one that touches the approximability limit curve (γf,1+2eγf)(\gamma_f,1+2e^{-\gamma_f}) established by Jain, Mahdian, and Saberi. As a consequence, we obtain the first optimal approximation algorithm for instances dominated by connection costs. When combined with a (1.11,1.7764)(1.11,1.7764)-approximation algorithm proposed by Jain et al., and later analyzed by Mahdian et al., we obtain the overall approximation guarantee of 1.5 for the metric UFL problem. We also describe how to use our algorithm to improve the approximation ratio for the 3-level version of UFL

    The approximation gap for the metric facility location problem is not yet closed

    No full text
    We consider the 1.52-approximation algorithm of Mahdian et al. for the metric uncapacitated facility location problem. We show that their algorithm does not close the gap with the lower bound on approximability, 1.463, by providing a construction of instances for which its approximation ratio is not better than 1.494
    corecore