263 research outputs found

    Dual Attention Networks for Visual Reference Resolution in Visual Dialog

    Full text link
    Visual dialog (VisDial) is a task which requires an AI agent to answer a series of questions grounded in an image. Unlike in visual question answering (VQA), the series of questions should be able to capture a temporal context from a dialog history and exploit visually-grounded information. A problem called visual reference resolution involves these challenges, requiring the agent to resolve ambiguous references in a given question and find the references in a given image. In this paper, we propose Dual Attention Networks (DAN) for visual reference resolution. DAN consists of two kinds of attention networks, REFER and FIND. Specifically, REFER module learns latent relationships between a given question and a dialog history by employing a self-attention mechanism. FIND module takes image features and reference-aware representations (i.e., the output of REFER module) as input, and performs visual grounding via bottom-up attention mechanism. We qualitatively and quantitatively evaluate our model on VisDial v1.0 and v0.9 datasets, showing that DAN outperforms the previous state-of-the-art model by a significant margin.Comment: EMNLP 201

    Cross-Modal Alignment Learning of Vision-Language Conceptual Systems

    Full text link
    Human infants learn the names of objects and develop their own conceptual systems without explicit supervision. In this study, we propose methods for learning aligned vision-language conceptual systems inspired by infants' word learning mechanisms. The proposed model learns the associations of visual objects and words online and gradually constructs cross-modal relational graph networks. Additionally, we also propose an aligned cross-modal representation learning method that learns semantic representations of visual objects and words in a self-supervised manner based on the cross-modal relational graph networks. It allows entities of different modalities with conceptually the same meaning to have similar semantic representation vectors. We quantitatively and qualitatively evaluate our method, including object-to-word mapping and zero-shot learning tasks, showing that the proposed model significantly outperforms the baselines and that each conceptual system is topologically aligned.Comment: 19 pages, 4 figure

    Simulating Problem Difficulty in Arithmetic Cognition Through Dynamic Connectionist Models

    Full text link
    The present study aims to investigate similarities between how humans and connectionist models experience difficulty in arithmetic problems. Problem difficulty was operationalized by the number of carries involved in solving a given problem. Problem difficulty was measured in humans by response time, and in models by computational steps. The present study found that both humans and connectionist models experience difficulty similarly when solving binary addition and subtraction. Specifically, both agents found difficulty to be strictly increasing with respect to the number of carries. Another notable similarity is that problem difficulty increases more steeply in subtraction than in addition, for both humans and connectionist models. Further investigation on two model hyperparameters --- confidence threshold and hidden dimension --- shows higher confidence thresholds cause the model to take more computational steps to arrive at the correct answer. Likewise, larger hidden dimensions cause the model to take more computational steps to correctly answer arithmetic problems; however, this effect by hidden dimensions is negligible.Comment: 7 pages; 15 figures; 5 tables; Published in the proceedings of the 17th International Conference on Cognitive Modelling (ICCM 2019
    • โ€ฆ
    corecore