7,801 research outputs found
Summary of Discussion Question 4: Energy Expandability of a Linear Collider
We report on Discussion Question 4, in Sub-group 1 (`TeV-class') of the
Snowmass Working Group E3: `Experimental Approaches: Linear Colliders', which
addresses the energy expandability of a linear collider. We first synthesize
discussions of the energy reach of the hardware of the 500 GeV designs for
TESLA and NLC/JLC. Next, we review plans for increasing the energy to 800-1000
GeV. We then look at options for expanding the energies to 1500 GeV and sketch
the two-beam accelerator approach to achieving multi-TeV energies.Comment: Presented at Snowmass 2001 (6 pages, 2 figures
Analysis of the X-ray Emission of Nine Swift Afterglows
The X-ray light-curves of 9 Swift XRT afterglows (050126, 050128, 050219A,
050315, 050318, 050319, 050401, 050408, 050505) display a complex behaviour: a
steep t^{-3.0 \pm 0.3} decay until ~400 s, followed by a significantly slower
t^{-0.65+/-0.20} fall-off, which at 0.2--2 d after the burst evolves into a
t^{-1.7+/-0.5} decay. We consider three possible models for the geometry of
relativistic blast-waves (spherical outflows, non-spreading jets, and spreading
jets), two possible dynamical regimes for the forward shock (adiabatic and
fully radiative), and we take into account a possible angular structure of the
outflow and delayed energy injection in the blast-wave, to identify the models
which reconcile the X-ray light-curve decay with the slope of the X-ray
continuum for each of the above three afterglow phases. By piecing together the
various models for each phase in a way that makes physical sense, we identify
possible models for the entire X-ray afterglow. The major conclusion of this
work is that a long-lived episode of energy injection in the blast-wave, during
which the shock energy increases at t^{1.0+/-0.5}, is required for five
afterglows and could be at work in the other four as well. Optical observations
in conjunction with the X-ray can distinguish among these various models. Our
simple tests allow the determination of the location of the cooling frequency
relative to the X-ray domain and, thus, of the index of the electron power-law
distribution with energy in the blast-wave. The resulting indices are clearly
inconsistent with an universal value.Comment: 10 pages, minor changes, to be published in the MNRA
GRB Energetics in the Swift Era
We examine the rest frame energetics of 76 gamma-ray bursts (GRBs) with known
redshift that were detected by the Swift spacecraft and monitored by the
satellite's X-ray Telescope (XRT). Using the bolometric fluence values
estimated in Butler et al. 2007b and the last XRT observation for each event,
we set a lower limit the their collimation corrected energy Eg and find that a
68% of our sample are at high enough redshift and/or low enough fluence to
accommodate a jet break occurring beyond the last XRT observation and still be
consistent with the pre-Swift Eg distribution for long GRBs. We find that
relatively few of the X-ray light curves for the remaining events show evidence
for late-time decay slopes that are consistent with that expected from post jet
break emission. The breaks in the X-ray light curves that do exist tend to be
shallower and occur earlier than the breaks previously observed in optical
light curves, yielding a Eg distribution that is far lower than the pre-Swift
distribution. If these early X-ray breaks are not due to jet effects, then a
small but significant fraction of our sample have lower limits to their
collimation corrected energy that place them well above the pre-Swift Eg
distribution. Either scenario would necessitate a much wider post-Swift Eg
distribution for long cosmological GRBs compared to the narrow standard energy
deduced from pre-Swift observations. We note that almost all of the pre-Swift
Eg estimates come from jet breaks detected in the optical whereas our sample is
limited entirely to X-ray wavelengths, furthering the suggestion that the
assumed achromaticity of jet breaks may not extend to high energies.Comment: 30 pages, 10 figures, Accepted to Ap
A new approach to equipment testing
Considerable controversy has arisen during the recent discussions over a new version of the RTCA DO160C/ED 14C Section 22 document at the European Committee for Aviation Electronics. Section 22 is concerned with lightning waveform tests to equipment. Investigations of some of these controversies with circuit analysis and measurements indicate the impedance characteristics required of the transient generators and the possibility of testing to a voltage limit even for current waveforms
z'-band Ground-Based Detection of the Secondary Eclipse of WASP-19b
We present the ground-based detection of the secondary eclipse of the
transiting exoplanet WASP-19b. The observations were made in the Sloan z'-band
using the ULTRACAM triple-beam CCD camera mounted on the NTT. The measurement
shows a 0.088\pm0.019% eclipse depth, matching previous predictions based on H-
and K-band measurements. We discuss in detail our approach to the removal of
errors arising due to systematics in the data set, in addition to fitting a
model transit to our data. This fit returns an eclipse centre, T0, of
2455578.7676 HJD, consistent with a circular orbit. Our measurement of the
secondary eclipse depth is also compared to model atmospheres of WASP-19b, and
is found to be consistent with previous measurements at longer wavelengths for
the model atmospheres we investigated.Comment: 20 pages, 10 figures. Published in the ApJ Supplement serie
DESIGN AND PERFORMANCE OF INTRA-TRAIN FEEDBACK SYSTEMS AT ATF2
The major goals of the final focus test beam line facility ATF2 are to provide electron beams with a few tens of nanometer beam sizes and beam stability control at the nanometer level. In order to achieve such a level of stability beam-based feedback systems are necessary at different timescales to correct static and dynamic effects. In particular, we present the design of intra-train feedback systems to correct the impact of fast jitter sources. We study a bunchto- bunch feedback system installed in the extraction line to combat the ring extraction transverse jitters. In addition, we design a bunch-to-bunch feedback system at the interaction point for correction of position jitter due to the fast vibration of the magnets in the final focus. Optimum feedback software algorithms are discussed and simulation results are presented
Testing the standard fireball model of GRBs using late X-ray afterglows measured by Swift
We show that all X-ray decay curves of GRBs measured by Swift can be fitted
using one or two components both of which have exactly the same functional form
comprised of an early falling exponential phase followed by a power law decay.
The 1st component contains the prompt gamma-ray emission and the initial X-ray
decay. The 2nd component appears later, has a much longer duration and is
present for ~80% of GRBs. It most likely arises from the external shock which
eventually develops into the X-ray afterglow. In the remaining ~20% of GRBs the
initial X-ray decay of the 1st component fades more slowly than the 2nd and
dominates at late times to form an afterglow but it is not clear what the
origin of this emission is.
The temporal decay parameters and gamma/X-ray spectral indices derived for
107 GRBs are compared to the expectations of the standard fireball model
including a search for possible "jet breaks". For ~50% of GRBs the observed
afterglow is in accord with the model but for the rest the temporal and
spectral indices do not conform to the expected closure relations and are
suggestive of continued, late, energy injection. We identify a few possible jet
breaks but there are many examples where such breaks are predicted but are
absent.
The time, T_a, at which the exponential phase of the 2nd component changes to
a final powerlaw decay afterglow is correlated with the peak of the gamma-ray
spectrum, E_peak. This is analogous to the Ghirlanda relation, indicating that
this time is in some way related to optically observed break times measured for
pre-Swift bursts.Comment: submitted to Ap
Proper Motions of H-alpha filaments in the Supernova Remnant RCW 86
We present a proper motion study of the eastern shock-region of the supernova
remnant RCW 86 (MSH 14-63, G315.4-2.3), based on optical observations carried
out with VLT/FORS2 in 2007 and 2010. For both the northeastern and southeastern
regions, we measure an average proper motion of H-alpha filaments of 0.10 +/-
0.02 arcsec/yr, corresponding to 1200 +/- 200 km/s at 2.5kpc. There is
substantial variation in the derived proper motions, indicating shock
velocities ranging from just below 700 km/s to above 2200 km/s.
The optical proper motion is lower than the previously measured X-ray proper
motion of northeastern region. The new measurements are consistent with the
previously measured proton temperature of 2.3 +/- 0.3 keV, assuming no
cosmic-ray acceleration. However, within the uncertainties, moderately
efficient (< 27 per cent) shock acceleration is still possible. The combination
of optical proper motion and proton temperature rule out the possibility that
RCW 86 has a distance less than 1.5kpc.
The similarity of the proper motions in the northeast and southeast is
peculiar, given the different densities and X-ray emission properties of the
regions. The northeastern region has lower densities and the X-ray emission is
synchrotron dominated, suggesting that the shock velocities should be higher
than in the southeastern, thermal X-ray dominated, region. A possible solution
is that the H-alpha emitting filaments are biased toward denser regions, with
lower shock velocities. Alternatively, in the northeast the shock velocity may
have decreased rapidly during the past 200yr, and the X-ray synchrotron
emission is an afterglow from a period when the shock velocity was higher.Comment: Accepted for publication in MNRA
- …