28 research outputs found
Conditional GIS surfaces and their potential for archaeological predictive modelling
Conditional GIS surfaces are well known in archaeological applications. Perhaps the most familiar of these are visibility analyses and friction layers (the basis of cost distance evaluations). Archaeological studies however tend to limit the use of such surfaces to purely environmental variables with little explanatory or analytical power. Friction, for example, is usually constructed entirely from a generated slope surface, occasionally with the addition of some physical barriers (such as waterways or perhaps vegetation differences). There are as well, a multitude of potential “conditions” to place upon spatial parameters which include strongly cultural ideas about knowledge, perception, familiarity, territoriality, risk, and other kinds of cognitive behaviours. Here we explore the kinds of “conditions” which could provide a great deal of explanatory or analytical understanding to our GIS archaeological applications, to categorize them into a meaningful framework, and to provide examples from a recent predictive model of how such surfaces can be applied
Predictive modeling of cultural resources in the Theban necropolis, Luxor, Egypt
The Egyptian Government created the Egyptian Antiquities Information System (EAIS) and a Comprehensive Development Plan to help protect cultural resources in the Theban Necropolis, Luxor, Egypt. By creating a cognitive predictive model and assessing its utility in locating tombs, researchers could be aided in the understanding of why these locations were preferred by the ancient Egyptians. The cognitive evaluations used include tomb location relative to geology, slope, elevation, fractures, and religious/burial practices. A set of sensitivity surfaces was created using Geographical Information System (GIS) / statistical analysis of measured and derived environmental and cultural attributes. Analysis of fifteen sensitivity surfaces produced two viable models which could be combined with the EAIS database to help show which areas should be avoided or studied further. The most important information generated from this research is the fact that there is a lack of focus in the archaeological world concerning why tomb locations were chosen
Fertility preservation for female patients with childhood, adolescent, and young adult cancer:recommendations from the PanCareLIFE Consortium and the International Late Effects of Childhood Cancer Guideline Harmonization Group
Female patients with childhood, adolescent, and young adult cancer are at increased risk for fertility impairment when treatment adversely affects the function of reproductive organs. Patients and their families desire biological children but substantial variations in clinical practice guidelines reduce consistent and timely implementation of effective interventions for fertility preservation across institutions. As part of the PanCareLIFE Consortium, and in collaboration with the International Late Effects of Childhood Cancer Guideline Harmonization Group, we reviewed the current literature and developed a clinical practice guideline for fertility preservation in female patients who were diagnosed with childhood, adolescent, and young adult cancer at age 25 years or younger, including guidance on risk assessment and available methods for fertility preservation. The Grading of Recommendations Assessment, Development and Evaluation methodology was used to grade the available evidence and to form the recommendations. This clinical practice guideline leverages existing evidence and international expertise to develop transparent recommendations that are easy to use to facilitate the care of female patients with childhood, adolescent, and young adult cancer who are at high risk for fertility impairment. A complete review of the existing evidence, including a quality assessment, transparent reporting of the guideline panel's decisions, and achievement of global interdisciplinary consensus, is an important result of this intensive collaboration.info:eu-repo/semantics/publishe
A View from the Past Into our Collective Future: The Oncofertility Consortium Vision Statement
Today, male and female adult and pediatric cancer patients, individuals transitioning between gender identities, and other individuals facing health extending but fertility limiting treatments can look forward to a fertile future. This is, in part, due to the work of members associated with the Oncofertility Consortium. The Oncofertility Consortium is an international, interdisciplinary initiative originally designed to explore the urgent unmet need associated with the reproductive future of cancer survivors. As the strategies for fertility management were invented, developed or applied, the individuals for who the program offered hope, similarly expanded. As a community of practice, Consortium participants share information in an open and rapid manner to addresses the complex health care and quality-of-life issues of cancer, transgender and other patients. To ensure that the organization remains contemporary to the needs of the community, the field designed a fully inclusive mechanism for strategic planning and here present the findings of this process. This interprofessional network of medical specialists, scientists, and scholars in the law, medical ethics, religious studies and other disciplines associated with human interventions, explore the relationships between health, disease, survivorship, treatment, gender and reproductive longevity. The goals are to continually integrate the best science in the service of the needs of patients and build a community of care that is ready for the challenges of the field in the future
PCB11 Metabolite, 3,3’-Dichlorobiphenyl-4-ol, Exposure Alters the Expression of Genes Governing Fatty Acid Metabolism in the Absence of Functional Sirtuin 3: Examining the Contribution of MnSOD
Although the production of polychlorinated biphenyls (PCBs) is prohibited, the inadvertent production of certain lower-chlorinated PCB congeners still threatens human health. We and others have identified 3,3’-dichlorobiphenyl (PCB11) and its metabolite, 3,3’-dichlorobiphenyl-4-ol (4OH-PCB11), in human blood, and there is a correlation between exposure to this metabolite and mitochondrial oxidative stress in mammalian cells. Here, we evaluated the downstream effects of 4OH-PCB11 on mitochondrial metabolism and function in the presence and absence of functional Sirtuin 3 (SIRT3), a mitochondrial fidelity protein that protects redox homeostasis. A 24 h exposure to 3 μM 4OH-PCB11 significantly decreased the cellular growth and mitochondrial membrane potential of SIRT3-knockout mouse embryonic fibroblasts (MEFs). Only wild-type cells demonstrated an increase in Manganese superoxide dismutase (MnSOD) activity in response to 4OH-PCB11–induced oxidative injury. This suggests the presence of a SIRT3-mediated post-translational modification to MnSOD, which was impaired in SIRT3-knockout MEFs, which counters the PCB insult. We found that 4OH-PCB11 increased mitochondrial respiration and endogenous fatty-acid oxidation-associated oxygen consumption in SIRT3-knockout MEFs; this appeared to occur because the cells exhausted their reserve respiratory capacity. To determine whether these changes in mitochondrial respiration were accompanied by similar changes in the regulation of fatty acid metabolism, we performed quantitative real-time polymerase chain reaction (qRT-PCR) after a 24 h treatment with 4OH-PCB11. In SIRT3-knockout MEFs, 4OH-PCB11 significantly increased the expression of ten genes controlling fatty acid biosynthesis, metabolism, and transport. When we overexpressed MnSOD in these cells, the expression of six of these genes returned to the baseline level, suggesting that the protective role of SIRT3 against 4OH-PCB11 is partially governed by MnSOD activity
Paradoxes of pandemic infection control: Proximity, pace and care within and beyond SARS-CoV-2
From the adoption of mask-wearing in public settings to the omnipresence of hand-sanitising, the SARS-CoV-2 pandemic has brought unprecedented cultural attention to infection prevention and control (IPC) in everyday life. At the same time, the pandemic threat has enlivened and unsettled hospital IPC processes, fracturing confidence, demanding new forms of evidence, and ultimately involving a rapid reassembling of what constitutes safe care. Here, drawing on semi-structured interviews with 63 frontline healthcare workers from two states in Australia, interviewed between September 2020 and March 2021, we illuminate some of the affective dimensions of IPC at a time of rapid change and evolving uncertainty. We track how a collective sense of risk and safety is relationally produced, redefining attitudes and practices around infective risk, and transforming accepted paradigms of care and self-protection. Drawing on Puig de la Bellacasa's formulation, we propose the notion of IPC as a multidimensional matter of care. Highlighting the complex negotiation of space and time in relation to infection control and care illustrates a series of paradoxes, the understanding of which helps illuminate not only how IPC works, in practice, but also what it means to those working on the frontline of the pandemic
The Role of Sirtuin 3 in Radiation-Induced Long-Term Persistent Liver Injury
In patients with abdominal region cancers, ionizing radiation (IR)-induced long-term liver injury is a major limiting factor in the use of radiotherapy. Previously, the major mitochondrial deacetylase, sirtuin 3 (SIRT3), has been implicated to play an important role in the development of acute liver injury after total body irradiation but no studies to date have examined the role of SIRT3 in liver’s chronic response to radiation. In the current study, ten-month-old Sirt3−/− and Sirt3+/+ male mice received 24 Gy radiation targeted to liver. Six months after exposure, irradiated Sirt3−/− mice livers demonstrated histopathological elevations in inflammatory infiltration, the loss of mature bile ducts and higher DNA damage (TUNEL) as well as protein oxidation (3-nitrotyrosine). In addition, increased expression of inflammatory chemokines (IL-6, IL-1β, TGF-β) and fibrotic factors (Procollagen 1, α-SMA) were also measured in Sirt3−/− mice following 24 Gy IR. The alterations measured in enzymatic activities of catalase, glutathione peroxidase, and glutathione reductase in the livers of irradiated Sirt3−/− mice also implied that hydrogen peroxide and hydroperoxide sensitive signaling cascades in the absence of SIRT3 might contribute to the IR-induced long-term liver injury