98 research outputs found

    Multicentre pilot randomised clinical trial of early in-bed cycle ergometry with ventilated patients.

    Get PDF
    Introduction: Acute rehabilitation in critically ill patients can improve post-intensive care unit (post-ICU) physical function. In-bed cycling early in a patient\u27s ICU stay is a promising intervention. The objective of this study was to determine the feasibility of recruitment, intervention delivery and retention in a multi centre randomised clinical trial (RCT) of early in-bed cycling with mechanically ventilated (MV) patients. Methods: We conducted a pilot RCT conducted in seven Canadian medical-surgical ICUs. We enrolled adults who could ambulate independently before ICU admission, within the first 4 days of invasive MV and first 7 days of ICU admission. Following informed consent, patients underwent concealed randomisation to either 30 min/day of in-bed cycling and routine physiotherapy (Cycling) or routine physiotherapy alone (Routine) for 5 days/week, until ICU discharge. Our feasibility outcome targets included: accrual of 1-2 patients/month/site; \u3e80% cycling protocol delivery; \u3e80% outcomes measured and \u3e80% blinded outcome measures at hospital discharge. We report ascertainment rates for our primary outcome for the main trial (Physical Function ICU Test-scored (PFIT-s) at hospital discharge). Results: Between 3/2015 and 6/2016, we randomised 66 patients (36 Cycling, 30 Routine). Our consent rate was 84.6 % (66/78). Patient accrual was (mean (SD)) 1.1 (0.3) patients/month/site. Cycling occurred in 79.3% (146/184) of eligible sessions, with a median (IQR) session duration of 30.5 (30.0, 30.7) min. We recorded 43 (97.7%) PFIT-s scores at hospital discharge and 37 (86.0%) of these assessments were blinded. Discussion: Our pilot RCT suggests that a future multicentre RCT of early in-bed cycling for MV patients in the ICU is feasible. Trial registration number: NCT02377830

    First dose behavioral tolerance to phencyclidine on food-rewarded bar pressing behavior in the rat

    Full text link
    The behavioral effects of single doses of phencyclidine (PCP) were examined in drug-naive adult male Holtzman rats trained to press a bar on a fixed ratio (4) schedule (FR 4 ), i.e., a reward of sugarsweetened milk was earned on every fourth bar press. Groups of rats (four to eight rats per group) received specific doses of PCP which were held constant for each group throughout the study. Dose-response curves for PCP given in doses of 1.0, 1.8, 2.4, and 3.2 mg/kg IP were first determined and then redetermined at weekly intervals. A drug-free interval of 7–8 days was maintained between injections given weekly over a period of 4 weeks. The final dose of PCP was administered after a 4-week drug-free period. Evidence was obtained for first dose behavioral tolerance as shown by the significantly shortened duration of suppression of bar pressing on subsequent injections. Although subsequent weekly effects of equal doses of PCP showed no significant differences, they all differed significantly from the first injection. The reduced response to PCP was shown to be due to learned behavioral tolerance as demonstrated when PCP (3.2 mg/kg IP) was given to drug-naive animals in their home cages and 1 week later given the second dose in the operant behavioral situation. Under these circumstances, the second dose of PCP showed a similarly protracted depression of FR 4 responding as other animals given the drug for the first time in the operant situation. Subsequent weekly injections in the operant situation produced similar behavioral tolerance.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46412/1/213_2004_Article_BF00426513.pd

    Biogeography in the deep : hierarchical population genomic structure of two beaked whale species

    Get PDF
    Funding for this research was provided by the Office of Naval Research, Award numbers N000141613017 and N000142112712. ABO was supported by a partial studentship from the University of St Andrews, School of Biology; OEG by the Marine Alliance for Science and Technology for Scotland (Scottish Funding Council grant HR09011); ELC by a Rutherford Discovery Fellowship from the Royal Society of New Zealand Te Aparangi; NAS by a Ramon y Cajal Fellowship from the Spanish Ministry of Innovation; MLM by the European Union’s Horizon 2020 Research and Innovation Programme (Marie Skłodowska-Curie grant 801199); CR by the Marine Institute (Cetaceans on the Frontier) and the Irish Research Council; and MTO by the Hartmann Foundation.The deep sea is the largest ecosystem on Earth, yet little is known about the processes driving patterns of genetic diversity in its inhabitants. Here, we investigated the macro- and microevolutionary processes shaping genomic population structure and diversity in two poorly understood, globally distributed, deep-sea predators: Cuvier’s beaked whale (Ziphius cavirostris) and Blainville’s beaked whale (Mesoplodon densirostris). We used double-digest restriction associated DNA (ddRAD) and whole mitochondrial genome (mitogenome) sequencing to characterise genetic patterns using phylogenetic trees, cluster analysis, isolation-by-distance, genetic diversity and differentiation statistics. Single nucleotide polymorphisms (SNPs; Blainville’s n = 43 samples, SNPs=13988; Cuvier’s n = 123, SNPs= 30479) and mitogenomes (Blainville’s n = 27; Cuvier’s n = 35) revealed substantial hierarchical structure at a global scale. Both species display significant genetic structure between the Atlantic, Indo-Pacific and in Cuvier’s, the Mediterranean Sea. Within major ocean basins, clear differentiation is found between genetic clusters on the east and west sides of the North Atlantic, and some distinct patterns of structure in the Indo-Pacific and Southern Hemisphere. We infer that macroevolutionary processes shaping patterns of genetic diversity include biogeographical barriers, highlighting the importance of such barriers even to highly mobile, deep-diving taxa. The barriers likely differ between the species due to their thermal tolerances and evolutionary histories. On a microevolutionary scale, it seems likely that the balance between resident populations displaying site fidelity, and transient individuals facilitating gene flow, shapes patterns of connectivity and genetic drift in beaked whales. Based on these results, we propose management units to facilitate improved conservation measures for these elusive species.Publisher PDFPeer reviewe

    Biogeography in the deep: hierarchical population genomic structure of two beaked whale species

    Get PDF
    The deep sea is the largest ecosystem on Earth, yet little is known about the processes driving patterns of genetic diversity in its inhabitants. Here, we investigated the macro- and microevolutionary processes shaping genomic population structure and diversity in two poorly understood, globally distributed, deep-sea predators: Cuvier’s beaked whale (Ziphius cavirostris) and Blainville’s beaked whale (Mesoplodon densirostris). We used double-digest restriction associated DNA (ddRAD) and whole mitochondrial genome (mitogenome) sequencing to characterise genetic patterns using phylogenetic trees, cluster analysis, isolation-by-distance, genetic diversity and differentiation statistics. Single nucleotide polymorphisms (SNPs; Blainville’s n=43 samples, SNPs=13988; Cuvier’s n=123, SNPs= 30479) and mitogenomes (Blainville’s n=27; Cuvier’s n=35) revealed substantial hierarchical structure at a global scale. Both species display significant genetic structure between the Atlantic, Indo-Pacific and in Cuvier’s, the Mediterranean Sea. Within major ocean basins, clear differentiation is found between genetic clusters on the east and west sides of the North Atlantic, and some distinct patterns of structure in the Indo-Pacific and Southern Hemisphere. We infer that macroevolutionary processes shaping patterns of genetic diversity include biogeographical barriers, highlighting the importance of such barriers even to highly mobile, deep-diving taxa. The barriers likely differ between the species due to their thermal tolerances and evolutionary histories. On a microevolutionary scale, it seems likely that the balance between resident populations displaying site fidelity, and transient individuals facilitating gene flow, shapes patterns of connectivity and genetic drift. Based on these results, we propose management units to facilitate improved conservation measures for these elusive species
    corecore