189 research outputs found
Efficiency of conformalized ridge regression
Conformal prediction is a method of producing prediction sets that can be
applied on top of a wide range of prediction algorithms. The method has a
guaranteed coverage probability under the standard IID assumption regardless of
whether the assumptions (often considerably more restrictive) of the underlying
algorithm are satisfied. However, for the method to be really useful it is
desirable that in the case where the assumptions of the underlying algorithm
are satisfied, the conformal predictor loses little in efficiency as compared
with the underlying algorithm (whereas being a conformal predictor, it has the
stronger guarantee of validity). In this paper we explore the degree to which
this additional requirement of efficiency is satisfied in the case of Bayesian
ridge regression; we find that asymptotically conformal prediction sets differ
little from ridge regression prediction intervals when the standard Bayesian
assumptions are satisfied.Comment: 22 pages, 1 figur
Steganographic Generative Adversarial Networks
Steganography is collection of methods to hide secret information ("payload")
within non-secret information "container"). Its counterpart, Steganalysis, is
the practice of determining if a message contains a hidden payload, and
recovering it if possible. Presence of hidden payloads is typically detected by
a binary classifier. In the present study, we propose a new model for
generating image-like containers based on Deep Convolutional Generative
Adversarial Networks (DCGAN). This approach allows to generate more
setganalysis-secure message embedding using standard steganography algorithms.
Experiment results demonstrate that the new model successfully deceives the
steganography analyzer, and for this reason, can be used in steganographic
applications.Comment: 15 pages, 10 figures, 5 tables, Workshop on Adversarial Training
(NIPS 2016, Barcelona, Spain
- …