4 research outputs found

    Immobilization of antibacterial agents on the surface of cellulose membranes modified with polyglycedylmethacrylate

    Get PDF
    A new method of glycidylmethacrylate (GMA) radical copolymerization on the surface of commercial cellulose membranes followed by immobilization of synthetic antibiotics on grafted poly(GMA) chains has been developed. Transport and antimicrobial properties of modified membranes have been studied. It has been shown that decreasing of samples permeability is caused by grafting of GMA, and it depends on initiator concentration, duration of reaction and process temperature. Infrared spectrometry and capillary electrophoresis were used to analyze modified samples. Antibacterial properties of membranes modified by nalidixic acid and levofloxacin were studied against gram-negative bacteria E. coli and gram-positive bacteria S. aureus. Higher antibacterial activity of membranes modified by levofloxacin in comparison to those modified by nalidixic acid was shown. Thus, antibacterial activity of membranes modified by 0,5% solutions of antibiotics was 90% for samples with nalidixic acid and 100% for samples with levofloxacin. All samples showed lower antibacterial activity against gram-negative bacteria. The antibacterial activity remained stable for 36 days of membrane operation

    Механохімічнa активація та фотокаталітична активність оксидної цинк-молібденової композиції

    No full text
    Доведено можливість модифікування структурного каркаса полімерних гідрогелів хітозаном, унаслідок чого відбувається покращення їхніх механічних властивостей без погіршення сорбційної ємності та здатності до набрякання, що робить можливим використання їх у тканинній інжене- рії як матеріалів біомедичного призначення.In recent years hydrogels have become attractive targets for development of the controlled release rate substances that are characterized by suitable chemical and physical properties. Recent advances in the tissue engineering and cell therapy technologies have introduced additional value to the biologically compatible hydrogels that could be chemically modified with specific factors, such as cell microenvironment proteins, allowing for shaping and controlled growth of the cells in the 3D formations, suitable for further tissue engineering and cell therapy. This paper reports a mechanism of the entrapment modification of the polyacrylamide based gels with chitosan polymer. Such modification allows for the further covalent crosslinking of the protein-based growth factors and other extracellular matrix proteins that fully support proliferation and maintenance of the adhesion dependent and adhesion independent cells, including hematopoietic and mesenchymal stem cells
    corecore