157 research outputs found
Recommended from our members
Integrative functional genomics
A report on the Keystone Symposium 'Biological Discovery Using Diverse High-Throughput Data', Steamboat Springs, USA, 30 March-4 April 2004
Computational prediction of transcription-factor binding site locations
Identifying genomic locations of transcription-factor binding sites, particularly in higher eukaryotic genomes, has been an enormous challenge. Various experimental and computational approaches have been used to detect these sites; methods involving computational comparisons of related genomes have been particularly successful
Recommended from our members
Meta-analysis discovery of tissue-specific DNA sequence motifs from mammalian gene expression data
BACKGROUND: A key step in the regulation of gene expression is the sequence-specific binding of transcription factors (TFs) to their DNA recognition sites. However, elucidating TF binding site (TFBS) motifs in higher eukaryotes has been challenging, even when employing cross-species sequence conservation. We hypothesized that for human and mouse, many orthologous genes expressed in a similarly tissue-specific manner in both human and mouse gene expression data, are likely to be co-regulated by orthologous TFs that bind to DNA sequence motifs present within noncoding sequence conserved between these genomes. RESULTS: We performed automated motif searching and merging across four different motif finding algorithms, followed by filtering of the resulting motifs for those that contain blocks of information content. Applying this motif finding strategy to conserved noncoding regions surrounding co-expressed tissue-specific human genes allowed us to discover both previously known, and many novel candidate, regulatory DNA motifs in all 18 tissue-specific expression clusters that we examined. For previously known TFBS motifs, we observed that if a TF was expressed in the specified tissue of interest, then in most cases we identified a motif that matched its TRANSFAC motif; conversely, of all those discovered motifs that matched TRANSFAC motifs, most of the corresponding TF transcripts were expressed in the tissue(s) corresponding to the expression cluster for which the motif was found. CONCLUSION: Our results indicate that the integration of the results from multiple motif finding tools identifies and ranks highly more known and novel motifs than does the use of just one of these tools. In addition, we believe that our simultaneous enrichment strategies helped to identify likely human cis regulatory elements. A number of the discovered motifs may correspond to novel binding site motifs for as yet uncharacterized tissue-specific TFs. We expect this strategy to be useful for identifying motifs in other metazoan genomes
Distinguishing direct versus indirect transcription factor–DNA interactions
Transcriptional regulation is largely enacted by transcription factors (TFs) binding DNA. Large numbers of TF binding motifs have been revealed by ChIP-chip experiments followed by computational DNA motif discovery. However, the success of motif discovery algorithms has been limited when applied to sequences bound in vivo (such as those identified by ChIP-chip) because the observed TF–DNA interactions are not necessarily direct: Some TFs predominantly associate with DNA indirectly through protein partners, while others exhibit both direct and indirect binding. Here, we present the first method for distinguishing between direct and indirect TF–DNA interactions, integrating in vivo TF binding data, in vivo nucleosome occupancy data, and motifs from in vitro protein binding microarray experiments. When applied to yeast ChIP-chip data, our method reveals that only 48% of the data sets can be readily explained by direct binding of the profiled TF, while 16% can be explained by indirect DNA binding. In the remaining 36%, none of the motifs used in our analysis was able to explain the ChIP-chip data, either because the data were too noisy or because the set of motifs was incomplete. As more in vitro TF DNA binding motifs become available, our method could be used to build a complete catalog of direct and indirect TF–DNA interactions. Our method is not restricted to yeast or to ChIP-chip data, but can be applied in any system for which both in vivo binding data and in vitro DNA binding motifs are available.National Science Foundation (U.S.). (CAREER Award 0347801
Short-Term Calorie Restriction in Male Mice Feminizes Gene Expression and Alters Key Regulators of Conserved Aging Regulatory Pathways
Background: Calorie restriction (CR) is the only intervention known to extend lifespan in a wide range of organisms, including mammals. However, the mechanisms by which it regulates mammalian aging remain largely unknown, and the involvement of the TOR and sirtuin pathways (which regulate aging in simpler organisms) remain controversial. Additionally, females of most mammals appear to live longer than males within species; and, although it remains unclear whether this holds true for mice, the relationship between sex-biased and CR-induced gene expression remains largely unexplored. Methodology/Principal Findings: We generated microarray gene expression data from livers of male mice fed high calorie or CR diets, and we find that CR significantly changes the expression of over 3,000 genes, many between 10- and 50-fold. We compare our data to the GenAge database of known aging-related genes and to prior microarray expression data of genes expressed differently between male and female mice. CR generally feminizes gene expression and many of the most significantly changed individual genes are involved in aging, hormone signaling, and p53-associated regulation of the cell cycle and apoptosis. Among the genes showing the largest and most statistically significant CR-induced expression differences are Ddit4, a key regulator of the TOR pathway, and Nnmt, a regulator of lifespan linked to the sirtuin pathway. Using western analysis we confirmed post-translational inhibition of the TOR pathway. Conclusions: Our data show that CR induces widespread gene expression changes and acts through highly evolutionarily conserved pathways, from microorganisms to mammals, and that its life-extension effects might arise partly from a shift toward a gene expression profile more typical of females
UniPROBE, update 2015: new tools and content for the online database of protein-binding microarray data on protein-DNA interactions
The Universal PBM Resource for Oligonucleotide Binding Evaluation (UniPROBE) serves as a convenient source of information on published data generated using universal protein-binding microarray (PBM) technology, which provides in vitro data about the relative DNA-binding preferences of transcription factors for all possible sequence variants of a length k (‘k-mers’). The database displays important information about the proteins and displays their DNA-binding specificity data in terms of k-mers, position weight matrices and graphical sequence logos. This update to the database documents the growth of UniPROBE since the last update 4 years ago, and introduces a variety of new features and tools, including a new streamlined pipeline that facilitates data deposition by universal PBM data generators in the research community, a tool that generates putative nonbinding (i.e. negative control) DNA sequences for one or more proteins and novel motifs obtained by analyzing the PBM data using the BEEML-PBM algorithm for motif inference. The UniPROBE database is available at http://uniprobe.org.National Institutes of Health (U.S.) (R01 HG003985)National Science Foundation (U.S.). Graduate Research Fellowship Progra
Recommended from our members
Inferring condition-specific transcription factor function from DNA binding and gene expression data
Numerous genomic and proteomic datasets are permitting the elucidation of transcriptional regulatory networks in the yeast Saccharomyces cerevisiae. However, predicting the condition dependence of regulatory network interactions has been challenging, because most protein–DNA interactions identified in vivo are from assays performed in one or a few cellular states. Here, we present a novel method to predict the condition-specific functions of S. cerevisiae transcription factors (TFs) by integrating 1327 microarray gene expression data sets and either comprehensive TF binding site data from protein binding microarrays (PBMs) or in silico motif data. Importantly, our method does not impose arbitrary thresholds for calling target regions ‘bound' or genes ‘differentially expressed', but rather allows all the information derived from a TF binding or gene expression experiment to be considered. We show that this method can identify environmental, physical, and genetic interactions, as well as distinct sets of genes that might be activated or repressed by a single TF under particular conditions. This approach can be used to suggest conditions for directed in vivo experimentation and to predict TF function
Inferring condition-specific transcription factor function from DNA binding and gene expression data
DNA-Binding Specificity Changes in the Evolution of Forkhead Transcription Factors
The evolution of transcriptional regulatory networks entails the expansion and diversification of transcription factor (TF) families. The forkhead family of TFs, defined by a highly conserved winged helix DNA-binding domain (DBD), has diverged into dozens of subfamilies in animals, fungi, and related protists. We have used a combination of maximum-likelihood phylogenetic inference and independent, comprehensive functional assays of DNA-binding capacity to explore the evolution of DNA-binding specificity within the forkhead family. We present converging evidence that similar alternative sequence preferences have arisen repeatedly and independently in the course of forkhead evolution. The vast majority of DNA-binding specificity changes we observed are not explained by alterations in the known DNA-contacting amino acid residues conferring specificity for canonical forkhead binding sites. Intriguingly, we have found forkhead DBDs that retain the ability to bind very specifically to two completely distinct DNA sequence motifs.We propose an alternate specificity-determining mechanism whereby conformational rearrangements of the DBD broaden the spectrum of sequence motifs that a TF can recognize. DNA-binding bispecificity suggests a previously undescribed source of modularity and flexibility in gene regulation and may play an important role in the evolution of transcriptional regulatory networks.Organismic and Evolutionary Biolog
- …