24 research outputs found
Translocation of BCR to chromosome 9: A new cytogenetic variant detected by FISH in two Ph-negative, BCR-positive patients with chronic myeloid leukemia
Leukemic cells from two patients with Philadelphia-negative chronic myeloid leukemia (CML) were investigated: I) Cytogenetics showed a normal 46.XY karyotype in both cases, 2) molecular studies revealed rearrangement of the M-BCR region and formation of BCR-ABL fusion mRNA with b2a2 (patient I) or b3a2 (patient 2) configuration, and 3) fluorescence in situ hybridization (FISH) demonstrated relocation of the 5′ BCR sequences from one chromosome 22 to one chromosome 9. The ABL probe hybridized to both chromosomes 9 at band q34, while two other probes which map centromeric and telomeric of BCR on 22q 11 hybridized solely with chromosome 22. For the first time, a BCR-ABL rearrangement is shown to take place on 9q34 instead of in the usual location on 22q 11. A rearrangement in the latter site is found in all Ph-positive CML and in almost all investigated CML with variant Ph or Ph-negative, BCR-positive cases. The few aberrant chromosomal localizations of BCR-ABL recombinant genes found previously were apparently the result of complex and successive changes. Furthermore in patient 2, both chromosomes 9 showed positive FISH signals with both ABL and BCR probes. Restriction fragment length polymorphism (RFLP) analysis indicated that mitotic recombination had occurred on the long arm of chromosome 9 and that the rearranged chromosome 9 was of paternal origin. The leukemic cells of this patient showed a duplication of the BCR-ABL gene, analogous to duplication of the Ph chromosome in classic CML. In addition they had lost the maternal alleles of the 9q34 chromosomal region. The lymphocytes of patient 2 carried the maternal chromosome 9 alleles and were Ph-negative as evidenced by RFLP and FISH analyses, respectively. © 1993 Wiley-Liss, Inc
Elevated enhancer-oncogene contacts and higher oncogene expression levels by recurrent CTCF inactivating mutations in acute TÂ cell leukemia
Monoallelic inactivation of CCCTC-binding factor (CTCF) in human cancer drives altered methylated genomic states, altered CTCF occupancy at promoter and enhancer regions, and deregulated global gene expression. In patients with T cell acute lymphoblastic leukemia (T-ALL), we find that acquired monoallelic CTCF-inactivating events drive subtle and local genomic effects in nearly half of t(5; 14) (q35; q32.2) rearranged patients, especially when CTCF-binding sites are preserved in between the BCL11B enhancer and the TLX3 oncogene. These solitary intervening sites insulate TLX3 from the enhancer by inducing competitive looping to multiple binding sites near the TLX3 promoter. Reduced CTCF levels or deletion of the intervening CTCF site abrogates enhancer insulation by weakening competitive looping while favoring TLX3 promoter to BCL11B enhancer looping, which elevates oncogene expression levels and leukemia burden
Improved Gene Fusion Detection in Childhood Cancer Diagnostics Using RNA Sequencing
PURPOSE: Gene fusions play a significant role in cancer etiology, making their detection crucial for accurate diagnosis, prognosis, and determining therapeutic targets. Current diagnostic methods largely focus on either targeted or low-resolution genome-wide techniques, which may be unable to capture rare events or both fusion partners. We investigate if RNA sequencing can overcome current limitations with traditional diagnostic techniques to identify gene fusion events. METHODS: We first performed RNA sequencing on a validation cohort of 24 samples with a known gene fusion event, after which a prospective pan-pediatric cancer cohort (n = 244) was tested by RNA sequencing in parallel to existing diagnostic procedures. This cohort included hematologic malignancies, tumors of the CNS, solid tumors, and suspected neoplastic samples. All samples were processed in the routine diagnostic workflow and analyzed for gene fusions using standard-of-care methods and RNA sequencing. RESULTS: We identified a clinically relevant gene fusion in 83 of 244 cases in the prospective cohort. Sixty fusions were detected by both routine diagnostic techniques and RNA sequencing, and one fusion was detected only in routine diagnostics, but an additional 24 fusions were detected solely by RNA sequencing. RNA sequencing, therefore, increased the diagnostic yield by 38%-39%. In addition, RNA sequencing identified both gene partners involved in the gene fusion, in contrast to most routine techniques. For two patients, the newly identified fusion by RNA sequencing resulted in treatment with targeted agents. CONCLUSION: We show that RNA sequencing is sufficiently robust for gene fusion detection in routine diagnostics of childhood cancers and can make a difference in treatment decisions
No relation between adenosine triphosphate after manual cleaning and presence of microorganisms on endoscopes after automated high-level disinfection
Background and study aims Adenosine triphosphate (ATP) tests are increasingly used to detect biological material; however, their reliability to detect bacterial contamination in endoscopes is not proven. We investigated the predictive value of ATP tests after manual cleaning for presence or absence of microorganisms as shown by culture after automated high-level disinfection (HLD) in duodenoscopes and linear echoendoscopes (DLEs). Patients and methods After manual cleaning, ATP tests were performed on swab samples taken from the detachable cap and forceps elevator, and on flush samples of the DLE working channels. These results were compared to the growth of any microorganisms in cultures acquired after automated HLD. ATP tests with >200 relative light units (RLU) were considered positive. Receiver operator characteristic (ROC) curves were used to compare the RLU levels with microbial presence in cultures. Results In total, 903 procedures were performed involving 26 distinct DLEs. Depending on sample site, 20.8% (cap) to 63.8% (channel brush) of the ATP negative samples were accompanied by positive post-HLD cultures. 54.4% of the cap samples with a positive culture (growth of any kind of microorganism) and 91.8% of the channel samples with a positive culture had a negative ATP test after manual cleaning. ROC curves per sample site, DLE type and microorganism type all had area under the curves below 0.6. Conclusions In our study, ATP tests performed after manual cleaning could not predict presence or absence of microorganisms after automated HLD as shown by culture. More than half of the positive cultures were preceded by a negative ATP test