44 research outputs found

    Strain compensated InGaAs/AlAs triple barrier resonant tunnelling structures for THz applications

    Get PDF
    We report a theoretical study of InGaAs/AlAs triple barrier resonant tunnelling heterostructures which are optimised for operation in the terahertz frequency range, and compare these to current state of the art double barrier structures realised in the literature. We consider the effect of strain introduced due to the large lattice mismatch of the substrate, quantum well and potential barrier materials and describe designs with strain compensated active regions. Constraints have been imposed on the designs to minimise charge accumulation in the emitter quantum well which is often associated with more complex triple barrier structures. The use of a triple barrier structure suppresses the off resonance leakage current, thus increasing the maximum output power density, with � 3 mW�

    Critical state alignment and charge accumulation in triple barrier resonant tunnelling structures

    Get PDF
    We report observations of resonant tunnelling features in the current-voltage (I(V)) characteristics of a series of triple barrier resonant tunnelling structures (TBRTS) due to the critical alignment of the n=1 confined states of the two quantum wells within the active region. Charge accumulation in the first QW of these structures has a significant effect on the I(V) characteristics of the resonances. A nominally symmetric TBRTS and asymmetric TBRTS, with decreasing second well widths, have been studied, with observations of charge accumulation affecting the critical alignment in both symmetric and asymmetric designs. We demonstrate that in highly asymmetric structures the critical alignment can occur coincident to the Fermi level in the emitter, and remains on resonance at higher bias than is expected due to charge accumulation in the structure. With great renewed interest in tunnelling structures for high frequency (THz) operation, the understanding of device transport and charge accumulation is critical

    Thermally activated resonant tunnelling in GaAs/AlGaAs triple barrier tunnelling structures

    Get PDF
    A thermally activated resonant tunnelling feature has been observed in the current-voltage characteristics (I(V)) of triple barrier resonant tunnelling structures (TBRTS) due to alignment of the n=1 confined states in the two quantum wells (QWs) within the active region. With rising sample temperature, the tunnelling current of the resonant feature increases in magnitude, showing a small negative differential resistance region which is discernable even at 293K. This behaviour is unique to multiple barrier devices and cannot be observed in conventional double barrier resonant tunnelling structures. Symmetric TBRTS, of nominal well widths 67Å and asymmetric QW, with decreasing second well widths, nominally 64Å to 46Å, have been studied with temperature dependent resonant tunnelling behaviour observed in both symmetric and asymmetric designs. Activation energies have been extracted from Arrhenius plots of the magnitude of the thermally activated peak current for each device design. This activation energy decreases as the second well width is decreased due to alignment occurring at increasingly greater bias and as such at energies closer to the Fermi level in the emitter region of the devices. Experimentally determined activation energies are in good agreement with theoretical values obtained by modelling the device I(V) characteristic

    Evidence for population inversion in excited electron states of a double barrier resonant tunneling structure

    Get PDF
    We report evidence for a population inversion between excited electron states of the quantum well of a GaAs‐AlGaAs double barrier resonant tunneling structure (DBRTS). The relative populations of the states are determined by photoluminescence spectroscopy of the tunneling electrons in the structure. When the DBRTS is biased at the fourth electron resonance, the population of the n=4 confined level is found to be greater than that of the n=3 state. We show that such a population inversion is consistent with a rate equation analysis of the relative populations of the two levels when electrons tunnel into n=4

    Determination of the transport lifetime limiting scattering rate in InSb/Al<inf>x</inf>In<inf>1−x</inf> Sb quantum wells using optical surface microscopy

    Get PDF
    We report magnetotransport measurements of InSb/Al1−xInxSb quantum well structures at low temperature (3 K), with evidence for 3 characteristic regimes of electron carrier density and mobility. We observe characteristic surface structure using differential interference contrast DIC (Nomarski) optical imaging, and through use of image analysis techniques, we are able to extract a representative average grain feature size for this surface structure. From this we deduce a limiting low temperature scattering mechanism not previously incorporated in transport lifetime modelling of this system, with this improved model giving strong agreement with standard low temperature Hall measurements. We have demonstrated that the mobility in such a material is critically limited by quality from the buffer layer growth, as opposed to fundamental material scattering mechanisms. This suggests that the material has immense potential for mobility improvement over that reported to date

    Regulatory Elements within the Prodomain of Falcipain-2, a Cysteine Protease of the Malaria Parasite Plasmodium falciparum

    Get PDF
    Falcipain-2, a papain family cysteine protease of the malaria parasite Plasmodium falciparum, plays a key role in parasite hydrolysis of hemoglobin and is a potential chemotherapeutic target. As with many proteases, falcipain-2 is synthesized as a zymogen, and the prodomain inhibits activity of the mature enzyme. To investigate the mechanism of regulation of falcipain-2 by its prodomain, we expressed constructs encoding different portions of the prodomain and tested their ability to inhibit recombinant mature falcipain-2. We identified a C-terminal segment (Leu155–Asp243) of the prodomain, including two motifs (ERFNIN and GNFD) that are conserved in cathepsin L sub-family papain family proteases, as the mediator of prodomain inhibitory activity. Circular dichroism analysis showed that the prodomain including the C-terminal segment, but not constructs lacking this segment, was rich in secondary structure, suggesting that the segment plays a crucial role in protein folding. The falcipain-2 prodomain also efficiently inhibited other papain family proteases, including cathepsin K, cathepsin L, cathepsin B, and cruzain, but it did not inhibit cathepsin C or tested proteases of other classes. A structural model of pro-falcipain-2 was constructed by homology modeling based on crystallographic structures of mature falcipain-2, procathepsin K, procathepsin L, and procaricain, offering insights into the nature of the interaction between the prodomain and mature domain of falcipain-2 as well as into the broad specificity of inhibitory activity of the falcipain-2 prodomain

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
    corecore