605 research outputs found

    Polarization properties of turbulent synchrotron bubbles: an approach based on Chandrasekhar-Kendall functions

    Get PDF
    Synchrotron emitting bubbles arise when the outflow from a compact relativistic engine, either a Black Hole or a Neutron Star, impacts on the environment. The emission properties of synchrotron radiation are widely used to infer the dynamical properties of these bubbles, and from them the injection conditions of the engine. Radio polarization offers an important tool to investigate the level and spectrum of turbulence, the magnetic field configuration, and possibly the degree of mixing. Here we introduce a formalism based on Chandrasekhar-Kendall functions that allows us to properly take into account the geometry of the bubble, going beyond standard analysis based on periodic cartesian domains. We investigate how different turbulent spectra, magnetic helicity and particle distribution function, impact on global properties that are easily accessible to observations, even at low resolution, and we provide fitting formulae to relate observed quantities to the underlying magnetic field structure.Comment: 10 pages, 8 figures, to be published in MNRA

    Modeling Radio Circular Polarization in the Crab Nebula

    Get PDF
    In this paper we present, for the first time, simulated maps of the circularly polarized synchrotron emission from the Crab nebula, using multidimensional state of the art models for the magnetic field geometry. Synchrotron emission is the signature of non-thermal emitting particles, typical of many high-energy astrophysical sources, both Galactic and extra-galactic ones. Its spectral and polarization properties allow us to infer key informations on the particles distribution function and magnetic field geometry. In recent years our understanding of pulsar wind nebulae has improved substantially thanks to a combination of observations and numerical models. A robust detection or non-detection of circular polarization will enable us to discriminate between an electron-proton plasma and a pair plasma, clarifying once for all the origin of the radio emitting particles, setting strong constraints on the pair production in pulsar magnetosphere, and the role of turbulence in the nebula. Previous attempts at measuring the circular polarization have only provided upper limits, but the lack of accurate estimates, based on reliable models, makes their interpretation ambiguous. We show here that those results are above the expected values, and that current polarimetric tecniques are not robust enough for conclusive result, suggesting that improvements in construction and calibration of next generation radio facilities are necessary to achieve the desired sensitivity.Comment: 5 pages, 2 figures, accepted for publication in MNRA

    GRMHD in axisymmetric dynamical spacetimes: the X-ECHO code

    Get PDF
    We present a new numerical code, X-ECHO, for general relativistic magnetohydrodynamics (GRMHD) in dynamical spacetimes. This is aimed at studying astrophysical situations where strong gravity and magnetic fields are both supposed to play an important role, such as for the evolution of magnetized neutron stars or for the gravitational collapse of the magnetized rotating cores of massive stars, which is the astrophysical scenario believed to eventually lead to (long) GRB events. The code is based on the extension of the Eulerian conservative high-order (ECHO) scheme [Del Zanna et al., A&A 473, 11 (2007)] for GRMHD, here coupled to a novel solver for the Einstein equations in the extended conformally flat condition (XCFC). We fully exploit the 3+1 Eulerian formalism, so that all the equations are written in terms of familiar 3D vectors and tensors alone, we adopt spherical coordinates for the conformal background metric, and we consider axisymmetric spacetimes and fluid configurations. The GRMHD conservation laws are solved by means of shock-capturing methods within a finite-difference discretization, whereas, on the same numerical grid, the Einstein elliptic equations are treated by resorting to spherical harmonics decomposition and solved, for each harmonic, by inverting band diagonal matrices. As a side product, we build and make available to the community a code to produce GRMHD axisymmetric equilibria for polytropic relativistic stars in the presence of differential rotation and a purely toroidal magnetic field. This uses the same XCFC metric solver of the main code and has been named XNS. Both XNS and the full X-ECHO codes are validated through several tests of astrophysical interest.Comment: 18 pages, 9 figures, accepted for publication in A&

    Axisymmetric equilibrium models for magnetised neutron stars in Scalar-Tensor Theories

    Full text link
    Among the possible extensions of General Relativity that have been put forward in order to address some long standing issues in our understanding of the Universe, Scalar-Tensor Theories have received a lot of attention for their simplicity. Interestingly, some of these predict a potentially observable non-linear phenomenon, known as \textit{spontaneous scalarisation}, in the presence of highly compact matter distributions, like the case of neutron stars. Neutron stars are ideal laboratories to investigate the properties of matter under extreme conditions, and in particular they are known to harbour the strongest magnetic fields in the Universe. Here, for the first time, we present a detailed study of magnetised neutron stars in Scalar-Tensor Theories. First, we show that the formalism developed for the study of magnetised neutron stars in General Relativity, based on the \textit{eXtended Conformally Flat Condition}, can easily be extended in the presence of a non-minimally coupled scalar field, retaining many of its numerical advantages. We then carry out a study of the parameter space considering the two extreme geometries of purely toroidal and purely poloidal magnetic fields, varying both the strength of the magnetic field and the intensity of scalarisation. We compare our results with magnetised general-relativistic solutions and un-magnetised scalarised solutions, showing how the mutual interplay between magnetic and scalar fields affect the magnetic and the scalarisation properties of neutron stars. In particular, we focus our discussion on magnetic deformability, maximum mass and range of scalarisation.Comment: accepted for publication by A&A; minor language corrections; minor typos correctio

    A Laminar Model for the Magnetic Field Structure in Bow-Shock Pulsar Wind Nebulae

    Get PDF
    Bow Shock Pulsar Wind Nebulae are a class of non-thermal sources, that form when the wind of a pulsar moving at supersonic speed interacts with the ambient medium, either the ISM or in a few cases the cold ejecta of the parent supernova. These systems have attracted attention in recent years, because they allow us to investigate the properties of the pulsar wind in a different environment from that of canonical Pulsar Wind Nebulae in Supernova Remnants. However, due to the complexity of the interaction, a full-fledged multidimensional analysis is still laking. We present here a simplified approach, based on Lagrangian tracers, to model the magnetic field structure in these systems, and use it to compute the magnetic field geometry, for various configurations in terms of relative orientation of the magnetic axis, pulsar speed and observer direction. Based on our solutions we have computed a set of radio emission maps, including polarization, to investigate the variety of possible appearances, and how the observed emission pattern can be used to constrain the orientation of the system, and the possible presence of turbulence.Comment: 13 pages, 12 figures, accepted for publication in MNRA
    • …
    corecore