21 research outputs found

    Exposure to bats: updated recommendations

    No full text

    Leptospira infections in trappers from Ontario

    No full text
    BACKGROUND: Four trappers presented to the Middlesex-London Health Unit in November, 1997 with similar clinical presentations. All four complained of fever, chills and headache, and three of the four had severe muscle aches. All gave histories of trapping raccoons before the onset of illness. Three of the four men exhibited diagnostic seroconversions to Leptospira grippotyphosa

    Assessing human exposure to spotted fever and typhus group rickettsiae in Ontario, Canada (2013–2018): a retrospective, cross-sectional study

    No full text
    Abstract Background Assessing the burden of rickettsial infections in Ontario, Canada, is challenging since rickettsial infections are not reportable to public health. In the absence of reportable disease data, we assessed the burden of rickettsial infections by examining patient serological data and clinical information. Methods Our retrospective, cross-sectional study included patients who had Rickettsia serological testing ordered by their physician, in Ontario, from 2013 to 2018. We tested sera from 2755 non-travel patients for antibodies against spotted fever group rickettsiae (SFGR) and typhus group rickettsiae (TGR) using an indirect immunofluorescence assay (IFA) (positive IgG titers ≥1:64). We classified cases using a sensitive surveillance case definition: confirmed (4-fold increase in IgG titers between acute and convalescent sera with clinical evidence of infection), possible (single positive sera with clinical evidence) and previous rickettsial infection (single positive sera without clinical evidence). We classified cases seropositive for both SFGR and TGR as unspecified Rickettsia infections (URIs). Results Less than 5% of all patients had paired acute and convalescent sera tested, and of these, we found a single, laboratory-confirmed SFGR case, with a 4-fold increase in IgG titers and evidence of fever, maculopapular rash and headache. There were 45 possible (19 SFGR, 7 TGR, 19 URI) and 580 previous rickettsial infection (183 SFGR, 89 TGR, 308 URI) cases. The rate of positive tests for SFGR, TGR and URI combined (all case classifications) were 4.4 per 100,000 population. For confirmed and possible cases, the most common signs and symptoms were fever, headache, gastrointestinal complaints and maculopapular rash. The odds of having seropositive patients increased annually by 30% (odds ratio = 1.3, 95% confidence interval: 1.23–1.39). Conclusions The rates of rickettsial infections in Ontario are difficult to determine. Based on confirmed and possible cases, rates are low, but inclusion of previous rickettsial infection cases would indicate higher rates. We highlight the need for education regarding the importance of testing acute and convalescent sera and consistent completion of the laboratory requisition in confirming rickettsial disease. We suggest further research in Ontario to investigate rickettsial agents in potential vectors and clinical studies employing PCR testing of clinical samples

    RETRACTED ARTICLE:The impact of repeated vaccination on influenza vaccine effectiveness: a systematic review and meta-analysis

    No full text
    Abstract Background Conflicting results regarding the impact of repeated vaccination on influenza vaccine effectiveness (VE) may cause confusion regarding the benefits of receiving the current season’s vaccine. Methods We systematically searched MEDLINE, Embase, PubMed, and Cumulative Index to Nursing and Allied Health Literature from database inception to August 17, 2016, for observational studies published in English that reported VE against laboratory-confirmed influenza for four vaccination groups, namely current season only, prior season only, both seasons, and neither season. We pooled differences in VE (∆VE) between vaccination groups by influenza season and type/subtype using a random effects model. The study protocol is registered with PROSPERO (registration number: CRD42016037241). Results We identified 3435 unique articles, reviewed the full text of 634, and included 20 for meta-analysis. Compared to prior season vaccination only, vaccination in both seasons was associated with greater protection against influenza H1N1 (∆VE = 26%; 95% CI, 15% to 36%) and B (∆VE = 24%; 95% CI, 7% to 42%), but not H3N2 (∆VE = 10%; 95% CI, –6% to 25%). Compared to no vaccination for either season, individuals who received the current season’s vaccine had greater protection against H1N1 (∆VE = 61%; 95% CI, 50% to 70%), H3N2 (∆VE = 41%; 95% CI, 33% to 48%), and B (∆VE = 62%; 95% CI, 54% to 68%). We observed no differences in VE between vaccination in both seasons and the current season only for H1N1 (∆VE = 4%; 95% CI, –7% to 15%), H3N2 (∆VE = –12%; 95% CI, –27% to 4%), or B (∆VE = –8%; 95% CI, –17% to 1%). Conclusions From the patient perspective, our results support current season vaccination regardless of prior season vaccination. We found no overall evidence that prior season vaccination negatively impacts current season VE. It is important that future VE studies include vaccination history over multiple seasons in order to evaluate repeated vaccination in more detail

    Retraction Note: The impact of repeated vaccination on influenza vaccine effectiveness: a systematic review and meta-analysis

    No full text
    The authors have retracted this article, The impact of repeated vaccination on influenza vaccine effectiveness: a systematic review and meta-analysis

    The impact of repeated vaccination on influenza vaccine effectiveness: a systematic review and meta-analysis

    No full text
    Abstract Background Conflicting results regarding the impact of repeated vaccination on influenza vaccine effectiveness (VE) may cause confusion regarding the benefits of receiving the current season’s vaccine. Methods We systematically searched MEDLINE, Embase, PubMed, and Cumulative Index to Nursing and Allied Health Literature from database inception to August 17, 2016, for observational studies published in English that reported VE against laboratory-confirmed influenza for the following four vaccination groups: current season only, prior season only, both seasons, and neither season. We pooled differences in VE (∆VE) between vaccination groups by influenza season and type/subtype using a random-effects model. The study protocol is registered with PROSPERO (registration number: CRD42016037241). Results We identified 3435 unique articles, reviewed the full text of 634, and included 20 for meta-analysis. Compared to prior season vaccination only, vaccination in both seasons was associated with greater protection against influenza H1N1 (∆VE = 25%; 95% CI 14%, 35%) and B (∆VE = 18%; 95% CI 3%, 33%), but not H3N2 (∆VE = 7%; 95% CI – 7%, 21%). Compared to no vaccination for either season, individuals who received the current season’s vaccine had greater protection against H1N1 (∆VE = 62%; 95% CI 51%, 70%), H3N2 (∆VE = 45%; 95% CI 35%, 53%), and B (∆VE = 64%; 95% CI 57%, 71%). We observed no differences in VE between vaccination in both seasons and the current season only for H1N1 (∆VE = 3%; 95% CI – 8%, 13%), but less protection against influenza H3N2 (∆VE = − 20%; 95% CI – 36%, − 4%), and B (∆VE = − 11%; 95% CI – 20%, − 2%). Conclusions Our results support current season vaccination regardless of prior season vaccination because VE for vaccination in the current season only is higher compared to no vaccination in either season for all types/subtypes, and for H1N1 and influenza B, vaccination in both seasons provides better VE than vaccination in the prior season only. Although VE was lower against H3N2 and B for individuals vaccinated in both seasons compared to those vaccinated in the current season only, it should be noted that past vaccination history cannot be altered and this comparison disregards susceptibility to influenza during the prior season among those vaccinated in the current season only. In addition, our results for H3N2 were particularly influenced by the 2014–2015 influenza season and the impact of repeated vaccination for all types/subtypes may vary from season to season. It is important that future VE studies include vaccination history over multiple seasons to evaluate repeated vaccination in more detail

    Beyond flu: Trends in respiratory infection outbreaks in Ontario healthcare settings from 2007 to 2017, and implications for non-influenza outbreak management

    No full text
    Background: Outbreaks cause significant morbidity and mortality in healthcare settings. Current testing methods can identify specific viral respiratory pathogens, yet the approach to outbreak management remains general. Objectives: Our aim was to examine pathogen-specific trends in respiratory outbreaks, including how attack rates, case fatality rates and outbreak duration differ by pathogen between hospitals and long-term care (LTC) and retirement homes (RH) in Ontario. Methods: Confirmed respiratory outbreaks in Ontario hospitals and LTC/RH reported between September 1, 2007, and August 31, 2017, were extracted from the integrated Public Health Information System (iPHIS). Median attack rates and outbreak duration and overall case fatality rates of pathogen-specific outbreaks were compared in both settings. Results: Over the 10-year surveillance period, 9,870 confirmed respiratory outbreaks were reported in Ontario hospitals and LTC/RH. Influenza was responsible for most outbreaks (32% in LTC/RH, 51% in hospitals), but these outbreaks were shorter and had lower attack rates than most non-influenza outbreaks in either setting. Human metapneumovirus, while uncommon (<4% of outbreaks) had high case fatality rates in both settings. Conclusion: Attack rates and case fatality rates varied by pathogen, as did outbreak duration. Development of specific outbreak management guidance that takes into account pathogen and healthcare setting may be useful to limit the burden of respiratory outbreaks
    corecore