24 research outputs found
Recommended from our members
Effects of Prenatal Social Stress and Maternal Dietary Fatty Acid Ratio on Infant Temperament: Does Race Matter?
Background: Infant temperament predicts a range of developmental and behavioral outcomes throughout childhood. Both maternal fatty acid intake and psychosocial stress exposures during pregnancy may influence infant temperament. Furthermore, maternal race may modify prenatal diet and stress effects. The goals of this study are to examine the joint effects of prenatal diet and stress and the modifying effects of race on infant behavior. Methods: Analyses included N=255 mother-infant dyads, primarily minorities (21% Blacks; 42% Hispanics), enrolled in an urban pregnancy cohort. Maternal prenatal stress was indexed by a negative life events (NLEs) score on the Crisis in Family Systems-Revised survey. Prenatal total daily intakes of polyunsaturated fatty acids (PUFAs) (n3, n6) were estimated from a food frequency questionnaire; n3:n6 ratios were calculated. Mothers completed the Infant Behavior Questionnaire-Revised (IBQ-R), a measure of infant temperament, when the children were 6 months old. Three commonly used dimensions were derived: Orienting & Regulation, Extraversion, and Negative Affectivity. Associations among prenatal stress, maternal n3:n6 ratio, and race/ethnicity on infant temperament, controlling for maternal education and age and child sex, were examined. Results: Among Blacks, prenatal stress effects on infant Orienting & Regulation scores were modified by maternal n3:n6 ratios (p=0.03): As NLEs increased, lower n3:n6 ratios predicted lower infant Orienting & Regulation scores, whereas higher n3:n6 ratios attenuated the effect of prenatal stress. There were no main or interaction effects predicting Extraversion or Negative Affectivity. Conclusions: An optimal PUFA ratio may protect the fetus from stress effects on infant behavior, particularly among Blacks. These findings may have implications for later neurodevelopment and social functioning predicted by early temperamental characteristics
Fluoride Exposure During Early Adolescence and its Association with Internalizing Symptoms
Background: Early, chronic, low-level fluoride exposure has been linked to attention-deficit hyperactivity disorder (ADHD) and learning deficits in children. Rodent studies suggest a link between fluoride exposure and internalizing behaviors. No human studies have examined the impact of fluoride on internalizing behaviors during adolescence.
Objective: Evaluate the relationship between urinary fluoride and early adolescent internalizing symptoms in the Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS).
Methods: Participants in CCAAPS provided non-fasting spot urine samples at age 12 years (n = 286). Urine samples were analyzed using a microdiffusion method to determine childhood urinary fluoride (CUF) concentrations and were log-transformed for analyses. Caregivers of CCAAPS participants completed the Behavior Assessment System for Children-2 (BASC-2) at the age 12 study visit to assess internalizing symptoms (e.g., anxiety, depression, somatization), and a composite score of the three domains; T-scores ≥ 60 were used to identify adolescents in a clinically "at-risk" range. Race, age of the adolescent, household income, maternal age at birth, caregiver depression, caregiver-child relationships, and age 12-year serum cotinine concentrations were considered covariates in regression models. Sex-specific effects of fluoride exposures were investigated through the inclusion of interaction terms.
Results: Higher CUF concentrations were significantly associated with increased somatization (β = 3.64, 95% CI 0.49, 6.81) and internalizing composite T-scores in a clinically "at-risk" range (OR = 2.9, 95% CI 1.24, 6.9). Compared to females, males with higher CUF concentrations had more internalizing (pinteraction = 0.04) and somatization symptoms (pinteraction = 0.02) and were nearly seven times more likely to exhibit "at-risk" internalizing symptomology. CUF concentrations were not significantly associated with depression or anxiety symptoms.
Conclusions: This is the first study to link fluoride exposure and internalizing symptoms, specifically somatization. Somatization represents an interface of physical and psychological health. Continued follow-up will help shed light on the sex-specific relationship between fluoride and mental health and the role of somatization
Cumulative lifetime maternal stress and epigenome-wide placental DNA methylation in the PRISM cohort
<p>Evolving evidence links maternal stress exposure to changes in placental DNA methylation of specific genes regulating placental function that may have implications for the programming of a host of chronic disorders. Few studies have implemented an epigenome-wide approach. Using the Infinium HumanMethylation450 BeadChip (450K), we investigated epigenome-wide placental DNA methylation in relation to maternal experiences of traumatic and non-traumatic stressors over her lifetime assessed using the Life Stressor Checklist-Revised (LSC-R) survey (n = 207). We found differential DNA methylation at epigenome-wide statistical significance (FDR = 0.05) for 112 CpGs. Additionally, we observed three clusters that exhibited differential methylation in response to high maternal lifetime stress. Enrichment analyses, conducted at an FDR = 0.20, revealed lysine degradation to be the most significant pathway associated with maternal lifetimes stress exposure. Targeted enrichment analyses of the three largest clusters of probes, identified using the gap statistic, were enriched for genes associated with endocytosis (i.e., <i>SMAP1, ANKFY1</i>), tight junctions (i.e., <i>EPB41L4B</i>), and metabolic pathways (i.e., <i>INPP5E, EEF1B2</i>). These pathways, also identified in the top 10 KEGG pathways associated with maternal lifetime stress exposure, play important roles in multiple physiological functions necessary for proper fetal development. Further, two genes were identified to exhibit multiple probes associated with maternal lifetime stress (i.e., <i>ANKFY1, TM6SF1</i>). The methylation status of the probes belonging to each cluster and/or genes exhibiting multiple hits, may play a role in the pathogenesis of adverse health outcomes in children born to mothers with increased lifetime stress exposure.</p
Cumulative lifetime maternal stress and epigenome-wide placental DNA methylation in the PRISM cohort
Prenatal fine particulate exposure associated with reduced childhood lung function and nasal epithelia GSTP1 hypermethylation: Sex-specific effects
Abstract Background In utero exposure to particulate matter with an aerodynamic diameter of less than 2.5 μm (PM2.5) has been linked to child lung function. Overlapping evidence suggests that child sex and exposure timing may modify effects and associations may be mediated through glutathione S-transferase P1 (GSTP1) methylation. Methods We prospectively examined associations among prenatal PM2.5 exposure and child lung function and GSTP1 methylation in an urban pregnancy cohort study. We employed a validated satellite-based spatiotemporally resolved prediction model to estimate daily prenatal PM2.5 exposure over gestation. We used Baysian distributed lag interaction models (BDLIMs) to identify sensitive windows for prenatal PM2.5 exposure on child lung function and nasal epithelia GSTP1 methylation at age 7 years, and to examine effect modification by child sex. Results BDLIMs identified a sensitive window for prenatal PM2.5 exposure at 35–40 weeks gestation [cumulative effect estimate (CEE) = − 0.10, 95%CI = − 0.19 to − 0.01, per μg/m3 increase in PM2.5] and at 36–40 weeks (CEE = − 0.12, 95%CI = − 0.20 to − 0.01) on FEV1 and FVC, respectively, in boys. BDLIMs also identified a sensitive window of exposure at 37–40 weeks gestation between higher prenatal PM2.5 exposure and increased GSTP1 percent methylation. The association between higher GSTP1 percent methylation and decreased FEV1 was borderline significant in the sample as a whole (β = − 0.37, SE = 0.20, p = 0.06) and in boys in stratified analyses (β = − 0.56, SE = 0.29, p = 0.05). Conclusions Prenatal PM2.5 exposure in late pregnancy was associated with impaired early childhood lung function and hypermethylation of GSTPI in DNA isolated from nasal epithelial cells. There was a trend towards higher GSTP1 percent methylation being associated with reduced FEV1. All findings were most evident among boys