669 research outputs found
Coronavirus 3CL(pro )proteinase cleavage sites: Possible relevance to SARS virus pathology
BACKGROUND: Despite the passing of more than a year since the first outbreak of Severe Acute Respiratory Syndrome (SARS), efficient counter-measures are still few and many believe that reappearance of SARS, or a similar disease caused by a coronavirus, is not unlikely. For other virus families like the picornaviruses it is known that pathology is related to proteolytic cleavage of host proteins by viral proteinases. Furthermore, several studies indicate that virus proliferation can be arrested using specific proteinase inhibitors supporting the belief that proteinases are indeed important during infection. Prompted by this, we set out to analyse and predict cleavage by the coronavirus main proteinase using computational methods. RESULTS: We retrieved sequence data on seven fully sequenced coronaviruses and identified the main 3CL proteinase cleavage sites in polyproteins using alignments. A neural network was trained to recognise the cleavage sites in the genomes obtaining a sensitivity of 87.0% and a specificity of 99.0%. Several proteins known to be cleaved by other viruses were submitted to prediction as well as proteins suspected relevant in coronavirus pathology. Cleavage sites were predicted in proteins such as the cystic fibrosis transmembrane conductance regulator (CFTR), transcription factors CREB-RP and OCT-1, and components of the ubiquitin pathway. CONCLUSIONS: Our prediction method NetCorona predicts coronavirus cleavage sites with high specificity and several potential cleavage candidates were identified which might be important to elucidate coronavirus pathology. Furthermore, the method might assist in design of proteinase inhibitors for treatment of SARS and possible future diseases caused by coronaviruses. It is made available for public use at our website:
Non-classical protein secretion in bacteria
BACKGROUND: We present an overview of bacterial non-classical secretion and a prediction method for identification of proteins following signal peptide independent secretion pathways. We have compiled a list of proteins found extracellularly despite the absence of a signal peptide. Some of these proteins also have known roles in the cytoplasm, which means they could be so-called "moon-lightning" proteins having more than one function. RESULTS: A thorough literature search was conducted to compile a list of currently known bacterial non-classically secreted proteins. Pattern finding methods were applied to the sequences in order to identify putative signal sequences or motifs responsible for their secretion. We have found no signal or motif characteristic to any majority of the proteins in the compiled list of non-classically secreted proteins, and conclude that these proteins, indeed, seem to be secreted in a novel fashion. However, we also show that the apparently non-classically secreted proteins are still distinguished from cellular proteins by properties such as amino acid composition, secondary structure and disordered regions. Specifically, prediction of disorder reveals that bacterial secretory proteins are more structurally disordered than their cytoplasmic counterparts. Finally, artificial neural networks were used to construct protein feature based methods for identification of non-classically secreted proteins in both Gram-positive and Gram-negative bacteria. CONCLUSION: We present a publicly available prediction method capable of discriminating between this group of proteins and other proteins, thus allowing for the identification of novel non-classically secreted proteins. We suggest candidates for non-classically secreted proteins in Escherichia coli and Bacillus subtilis. The prediction method is available online
A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites
We have developed a new method for identification of signal peptides and their cleavage sites based on neural networks trained on separate sets of prokaryotic and eukaryotic sequences. The method performs significantly better than previous prediction schemes, and can easily be applied on genome-wide data sets. Discrimination between cleaved signal peptides and uncleaved N-terminal signal-anchor sequences is also possible, thoughwith lower precision. Predictions can be made on a publicly available WWW server. Present address: Novo Nordisk A/S, Scientific Computing, Building 9M1, Novo Alle, DK-2880 Bagsværd, Denmark Introduction Signal peptides control the entry of virtually all proteins to the secretory pathway, both in eukaryotes and prokaryotes (von Heijne, 1990; Gierasch, 1989; Rapoport, 1992). They comprise the N--terminal part of the amino acid chain, and are cleaved off while the protein is translocated through the membrane. The common structure of signal peptides from variou..
- …