2,574 research outputs found

    Incorporating a metropolis method in a distribution estimation using Markov random field algorithm.

    Get PDF
    Markov Random Field (MRF) modelling techniques have been recently proposed as a novel approach to probabilistic modelling for Estimation of Distribution Algorithms (EDAs)[34, 4]. An EDA using this technique, presented in [34], was called Distribution Estimation using Markov Random Fields (DEUM). DEUM was later extended to DEUMd [32, 33]. DEUM and DEUMd use a univariate model of probability distribution, and have been shown to perform better than other univariate EDAs for a range of optimization problems. This paper extends DEUMd to incorporate a simple Metropolis method and empirically shows that for linear univariate problems the proposed univariate MRF models are very effective. In particular, the proposed DEUMd algorithm can find the solution in O(n) fitness evaluations. Furthermore, we suggest that the Metropolis method can also be used to extend the DEUM approach to multivariate problems

    Solving the Ising spin glass problem using a bivariate EDA based on Markov random fields.

    Get PDF
    Markov Random Field (MRF) modelling techniques have been recently proposed as a novel approach to probabilistic modelling for Estimation of Distribution Algorithms (EDAs). An EDA using this technique was called Distribution Estimation using Markov Random Fields (DEUM). DEUM was later extended to DEUMd. DEUM and DEUMd use a univariate model of probability distribution, and have been shown to perform better than other univariate EDAs for a range of optimization problems. This paper extends DEUM to use a bivariate model and applies it to the Ising spin glass problems. We propose two variants of DEUM that use different sampling techniques. Our experimental result show a noticeable gain in performance

    Convergence of the Born Series with Low-Momentum Interactions

    Full text link
    The nonperturbative nature of nucleon-nucleon interactions as a function of a momentum cutoff is studied using Weinberg eigenvalues as a diagnostic. This investigation extends an earlier study of the perturbative convergence of the Born series to partial waves beyond the 3S1-3D1 channel and to positive energies. As the cutoff is lowered using renormalization-group or model-space techniques, the evolution of nonperturbative features at large cutoffs from strong short-range repulsion and the iterated tensor interaction are monitored via the complex Weinberg eigenvalues. When all eigenvalues lie within the unit circle, the expansion of the scattering amplitude in terms of the interaction is perturbative, with the magnitude of the largest eigenvalue setting the rate of convergence. Major decreases in the magnitudes of repulsive eigenvalues are observed as the Argonne v18, CD-Bonn or Nijmegen potentials are evolved to low momentum, even though two-body observables are unchanged. For chiral EFT potentials, running the cutoff lower tames the impact of the tensor force and of new nonperturbative features entering at N3LO. The efficacy of separable approximations to nuclear interactions derived from the Weinberg analysis is studied as a function of cutoff, and the connection to inverse scattering is demonstrated.Comment: 21 pages, 15 figures, minor additions, to appear in Nucl. Phys.

    Intra-guild compensation regulatesspecies richness in desert rodents

    Get PDF
    Evidence from numerous studies suggests that species richness is an emergent property of local communities. The maintenance of species richness, despite changes in species composition and environmental conditions, requires compensatory colonization and extinction events with species coming from a regional pool. Using long-term data from a rodent community in the Chihuahuan Desert, we use randomization methods to test the null hypothesis that changes in species richness occur randomly. We find that the dynamics of species richness differ significantly from a random process, and that these nonrandom dynamics occur largely within the most speciose guild. Finally, we propose a general framework for assessing the importance of species compensation in maintaining biodiversity within local communities. Our results highlight the importance of niche complementarity and compensation in maintaining relatively constant species richness over time

    Towards a Model-Independent Low Momentum Nucleon-Nucleon Interaction

    Full text link
    We provide evidence for a high precision model-independent low momentum nucleon-nucleon interaction. Performing a momentum-space renormalization group decimation, we find that the effective interactions constructed from various high precision nucleon-nucleon interaction models, such as the Paris, Bonn, Nijmegen, Argonne, CD Bonn and Idaho potentials, are identical. This model-independent low momentum interaction, called V_{low k}, reproduces the same phase shifts and deuteron pole as the input potential models, without ambiguous assumptions on the high momentum components, which are not constrained by low energy data and lead to model-dependent results in many-body applications. V_{low k} is energy-independent and does not necessitate the calculation of the Brueckner G matrix.Comment: 12 pages, 5 figures, minor changes and additions, to appear in Phys. Lett.

    Temperature dependence of the spin and orbital magnetization density in Sm1xGdxAl2Sm_{1-x}Gd_{x} Al_{2} around the spin-orbital compensation point

    Full text link
    Non-resonant ferromagnetic x-ray diffraction has been used to separate the spin and orbital contribution to the magnetization density of the proposed zero-moment ferromagnet Sm0.982Gd0.018Al2Sm_{0.982}Gd_{0.018} Al_{2}. The alignment of the spin and orbital moments relative to the net magnetization shows a sign reversal at 84K, the compensation temperature. Below this temperature the orbital moment is larger than the spin moment, and vice versa above it. This result implies that the compensation mechanism is driven by the different temperature dependencies of the 4f4f spin and orbital moments. Specific heat data indicate that the system remains ferromagnetically ordered throughout

    Temperature correction to the Casimir force in cryogenic range and anomalous skin effect

    Get PDF
    Temperature correction to the Casimir force is considered for real metals at low temperatures. With the temperature decrease the mean free path for electrons becomes larger than the field penetration depth. In this condition description of metals with the impedance of anomalous skin effect is shown to be more appropriate than with the permittivity. The effect is crucial for the temperature correction. It is demonstrated that in the zero frequency limit the reflection coefficients should coincide with those of ideal metal if we demand the entropy to be zero at T=0. All the other prescriptions discussed in the literature for the n=0n=0 term in the Lifshitz formula give negative entropy. It is shown that the temperature correction in the region of anomalous skin effect is not suppressed as it happens in the plasma model. This correction will be important in the future cryogenic measurements of the Casimir force.Comment: 12 pages, 2 figures, to be published in Phys. Rev.

    Zero-sum, the niche,and metacommunities: long-term dynamics of community assembly

    Get PDF
    Recent models of community assembly, structure, and dynamics have incorporated, to varying degrees, three mechanistic processes: resource limitation and interspecific competition, niche requirements of species, and exchanges between a local community and a regional species pool. Synthesizing 30 years of data from an intensively studied desert rodent community, we show that all of these processes, separately and in combination, have influenced the structural organization of this community and affected its dynamical response to both natural environmental changes and experimental perturbations. In addition, our analyses suggest that zero-sum constraints, niche differences, and metacommunity processes are inextricably linked in the ways that they affect the structure and dynamics of this system. Explicit consideration of the interaction of these processes should yield a deeper understanding of the assembly and dynamics of other ecological communities. This synthesis highlights the role that long-term data, especially when coupled with experimental manipulations, can play in assessing the fundamental processes that govern the structure and function of ecological communities

    On the energy-momentum tensor for a scalar field on manifolds with boundaries

    Full text link
    We argue that already at classical level the energy-momentum tensor for a scalar field on manifolds with boundaries in addition to the bulk part contains a contribution located on the boundary. Using the standard variational procedure for the action with the boundary term, the expression for the surface energy-momentum tensor is derived for arbitrary bulk and boundary geometries. Integral conservation laws are investigated. The corresponding conserved charges are constructed and their relation to the proper densities is discussed. Further we study the vacuum expectation value of the energy-momentum tensor in the corresponding quantum field theory. It is shown that the surface term in the energy-momentum tensor is essential to obtain the equality between the vacuum energy, evaluated as the sum of the zero-point energies for each normal mode of frequency, and the energy derived by the integration of the corresponding vacuum energy density. As an application, by using the zeta function technique, we evaluate the surface energy for a quantum scalar field confined inside a spherical shell.Comment: 25 pages, 2 figures, section and appendix on the surface energy for a spherical shell are added, references added, accepted for publication in Phys. Rev.

    Fluctuations of the Retarded Van der Waals Force

    Get PDF
    The retarded Van der Waals force between a polarizable particle and a perfectly conducting plate is re-examined. The expression for this force given by Casimir and Polder represents a mean force, but there are large fluctuations around this mean value on short time scales which are of the same order of magnitude as the mean force itself. However, these fluctuations occur on time scales which are typically of the order of the light travel time between the atom and the plate. As a consequence, they will not be observed in an experiment which measures the force averaged over a much longer time. In the large time limit, the magnitude of the mean squared velocity of a test particle due to this fluctuating Van der Waals force approaches a constant, and is similar to a Brownian motion of a test particle in an thermal bath with an effective temperature. However the fluctuations are not isotropic in this case, and the shift in the mean square velocity components can even be negative. We interpret this negative shift to correspond to a reduction in the velocity spread of a wavepacket. The force fluctuations discussed in this paper are special case of the more general problem of stress tensor fluctuations. These are of interest in a variety of areas fo physics, including gravity theory. Thus the effects of Van der Waals force fluctuations serve as a useful model for better understanding quantum effects in gravity theory.Comment: 14 pages, no figure
    corecore