106 research outputs found

    Indoor MIMO Measurements Using Polarization at the Mobile

    Get PDF

    Experimental investigation of precoding for EM exposure reduction

    Get PDF
    Reduction of human exposure to electromagnetic (EM) radiation from communications devices without compromising link quality is of importance as people spend more and more time using devices with wireless connectivity. This paper considers the idea of designing a low complexity baseband precoder to reduce user EM exposure for the user scenario of a laptop making an uplink connection to an access point terminal in a picocell environment. The design of the precoder is supported by channel sounding measurements and a ten-fold reduction in user exposure is indicated

    Modified UWB Spatio-Temporal Channel Simulation Including Pulse Distortion and Frequency Dependence

    Get PDF
    A modified simulation of ultra-wideband (UWB) multipath channels, combined with cluster classification and physics based pulse distortion mechanisms, is proposed in this letter. Spatiotemporal characteristics of multipath clusters are specifically generated based on 3 x 3 planar array systems with regard to scenario types and are simulated over ten frequency subbands (2–11 GHz). Thus, frequency-dependent characteristics of the propagation channels are also investigated and compared between each scenario. Finally, the probability of the bit-error rate is determined to quantify distortion effects on UWB multipath channels for all frequency subbands.</p

    Cascaded Fresnel Lens Antenna for Scan Loss Mitigation in Millimeter-Wave Access Points

    Get PDF
    Millimeter wave lens antennas will be essential for future wireless access. Conventionally, they increase the gain in the boresight direction only. In this paper, cascaded Fresnel zone plate lenses are combined with a phased array to increase the gain at wide steering angles of ±52°. The side lenses are tilted to align with the maximum steering angle, and cascaded to increase the focusing gain. The inner lenses increase the gain by 2.45 dB at boresight, and by 3.19 dB at the maximum steering angle. When the side lenses are repositioned, the simulated focusing gain increases to 4.69 dB. Asymmetric amplitude distributions are proposed to prevent the main lobe from splitting. An 8-dement 7-lens prototype operating at 28 GHz achieved a gain from 12.96 dBi to 15.35 dBi with a bandwidth of at least 1.3 GHz for all measured beam directions. The maximum measured azimuthal beamwidth was 27°. A design procedure and a theoretical analysis of diffraction through the lenses are provided. By increasing the SNR, this beamfonning antenna could improve the coverage of 3-sector 5G microcell base stations, and support gigabit wireless links for vehicular, rail, and satellite communications

    Measurement and Modelling of the Propagation Channel between Low Height Terminals

    Get PDF
    The evaluation of communication systems with low-height terminals requires path loss models that are applicable to low-height links. For the terminology low-height, the range 0.5 (mobile-) to 3m (fixed-node) above ground is considered. Herein, empirical non-time-dispersive propagation models for relaying systems with low-height terminals are proposed. The models consist of line-of-sight and non-line-of-sight branches. Single- and two-slope modelling approaches were examined. The models take into account the effect of frequency, transmitter and receiver height, and environment. They are complemented by shadowing and fast-fading distribution and correlation statistics. The performance of the models in producing accurate estimations is evaluated by comparison with sets of independent data

    Conformal Transmitarray for Scan Loss Mitigation with Thinned Reconfiguration

    Get PDF
    A conformal transmitarray with thinned control is presented, operating at 28 GHz. Its side panels are rotated to align with the maximum steering angle, increasing the gain and reducing the scan loss. The transmitarray is fed by an 8-element linear phased array antenna. Beam focusing to +/- 53 degrees is demonstrated for two different directions, using combinations of crossed-slot unit cells. A unit cell placement rule is proposed to significantly reduce (i.e. thin) the required number of reconfigurable unit cells. A filling factor of 43% was achieved compared to a fully populated design. This reduces the cost and biasing complexity. By minimising scan loss, this antenna could improve the performance of 5G small-cell access points

    Liquid Metal Application for Continuously Tunable Frequency Reconfigurable Antenna

    Get PDF
    This paper presents two different designs for frequency reconfigurable antennas capable of continuous tuning. The radiator, for both antenna designs, is a microstrip patch, formed from liquid metal, contained within a microfluidic channel structure. Both patch designs are aperture fed. The microfluidic channel structures are made from polydimethylsiloxane (PDMS). The microfluidic channel structure for the first design has a meander layout and incorporates rows of posts. The simulated antenna provides a frequency tuning range of approximately 118% (i.e. 4.36 GHz) over the frequency range from 1.51 GHz to 5.87 GHz. An experimental result for the fully filled case shows a resonance at 1.49 GHz (1.3% error compared with the simulation). Experienced rheological behavior of the liquid metal necessitates microfluidic channel modifications. For that reason, we modified the channel structure used to realise the radiating patch for the second design. Straight channels are implemented in the second microfluidic device. According to simulation the design yields a frequency tuning range of about 77% (i.e. 3.28 GHz) from 2.62 GHz to 5.90 GHz

    Markov chain analysis for land mobile satellite MIMO channels

    Get PDF

    Simulation of UWB distortion combined with indoor spatio- temporal channels

    Get PDF
    • …
    corecore