7,784 research outputs found

    Elementary solution to the time-independent quantum navigation problem

    Get PDF
    A quantum navigation problem concerns the identification of a time-optimal Hamiltonian that realizes a required quantum process or task, under the influence of a prevailing ‘background’ Hamiltonian that cannot be manipulated. When the task is to transform one quantum state into another, finding the solution in closed form to the problem is nontrivial even in the case of timeindependent Hamiltonians. An elementary solution, based on trigonometric analysis, is found here when the Hilbert space dimension is two. Difficulties arising from generalizations to higher-dimensional systems are discussed

    Disambiguating Different Covariation Types

    Get PDF
    Covariations in neuronal latency or excitability can lead to peaks in spike train covariograms that may be very similar to those caused by spike timing synchronization (see companion article). Two quantitative methods are described here. The first is a method to estimate the excitability component of a covariogram, based on trial-by-trial estimates of excitability. Once estimated, this component may be subtracted from the covariogram, leaving only other types of contributions. The other is a method to determine whether the covariogram could potentially have been caused by latency covariations

    Correlations Without Synchrony

    Get PDF
    Peaks in spike train correlograms are usually taken as indicative of spike timing synchronization between neurons. Strictly speaking, however, a peak merely indicates that the two spike trains were not independent. Two biologically plausible ways of departing from independence that are capable of generating peaks very similar to spike timing peaks are described here: covariations over trials in response latency and covariations over trials in neuronal excitability. Since peaks due to these interactions can be similar to spike timing peaks, interpreting a correlogram may be a problem with ambiguous solutions. What peak shapes do latency or excitability interactions generate? When are they similar to spike timing peaks? When can they be ruled out from having caused an observed correlogram peak? These are the questions addressed here. The previous article in this issue proposes quantitative methods to tell cases apart when latency or excitability covariations cannot be ruled out

    Note on exponential families of distributions

    Full text link
    We show that an arbitrary probability distribution can be represented in exponential form. In physical contexts, this implies that the equilibrium distribution of any classical or quantum dynamical system is expressible in grand canonical form.Comment: 5 page

    Thermalisation of Quantum States

    Get PDF
    An exact stochastic model for the thermalisation of quantum states is proposed. The model has various physically appealing properties. The dynamics are characterised by an underlying Schrodinger evolution, together with a nonlinear term driving the system towards an asymptotic equilibrium state and a stochastic term reflecting fluctuations. There are two free parameters, one of which can be identified with the heat bath temperature, while the other determines the characteristic time scale for thermalisation. Exact expressions are derived for the evolutionary dynamics of the system energy, the system entropy, and the associated density operator.Comment: 8 pages, minor corrections. To appear in JM

    Information Content for Quantum States

    Get PDF
    A method of representing probabilistic aspects of quantum systems is introduced by means of a density function on the space of pure quantum states. In particular, a maximum entropy argument allows us to obtain a natural density function that only reflects the information provided by the density matrix. This result is applied to derive the Shannon entropy of a quantum state. The information theoretic quantum entropy thereby obtained is shown to have the desired concavity property, and to differ from the the conventional von Neumann entropy. This is illustrated explicitly for a two-state system.Comment: RevTex file, 4 pages, 1 fi

    The Quantum Canonical Ensemble

    Get PDF
    The phase space of quantum mechanics can be viewed as the complex projective space endowed with a Kaehlerian structure given by the Fubini-Study metric and an associated symplectic form. We can then interpret the Schrodinger equation as generating a Hamiltonian dynamics. Based upon the geometric structure of the quantum phase space we introduce the corresponding natural microcanonical and canonical ensembles. The resulting density matrix for the canonical ensemble differs from density matrix of the conventional approach. As an illustration, the results are applied to the case of a spin one-half particle in a heat bath with an applied magnetic field.Comment: 8 pages, minor corrections. to appear in JMP vol. 3

    The ecology of Atlantic white cedar wetlands: a community profile

    Get PDF
    This monograph on the ecology of Atlantic white cedar wetlands is one of a series of U.S. Fish and Wildlife Service profiles of important freshwater wetland ecosystems of the United States. The purpose of the profile is to describe the extent, components, functioning, history, and treatment of these wetlands. It is intended to provide a useful reference to relevant scientific information and a synthesis of the available literature. The world range of Atlantic white cedar (Chamaecyparis thyoides) is limited to a ribbon of freshwater wetlands within 200 km of the Atlantic and Gulf coasts of the United States, extending from mid-Maine to mid-Florida and Mississippi. Often in inaccessible sites and difficult to traverse, cedar wetlands contain distinctive suites of plant species. Highly valued as commercial timber since the early days of European colonization of the continent, the cedar and its habitat are rapidly disappearing. This profile describes the Atlantic white cedar and the bogs and swamps it dominates or codominates throughout its range, discussing interrelationships with other habitats, putative origins and migration patterns, substrate biogeochemistry, associated plant and animal species (with attention to those that are rare, endangered, or threatened regionally or nationally), and impacts of both natural and anthropogenic disturbance. Research needs for each area are outlined. Chapters are devoted to the practices and problems of harvest and management, and to an examination of a large preserve recently acquired by the USFWS, the Alligator River National Wildlife Refuge in North Carolina

    On optimum Hamiltonians for state transformations

    Full text link
    For a prescribed pair of quantum states |psi_I> and |psi_F> we establish an elementary derivation of the optimum Hamiltonian, under constraints on its eigenvalues, that generates the unitary transformation |psi_I> --> |psi_F> in the shortest duration. The derivation is geometric in character and does not rely on variational calculus.Comment: 5 page
    • 

    corecore